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Preface

Functional analysis is an exceptionally useful subject, which is why a certain amount
of it is included in most beginning graduate courses on real analysis. For most
practicing analysts, however, the restriction to Banach spaces is not enough. This
book is intended to cover most of the general theory needed for application to other
areas of analysis.

Most books on functional analysis come in one of two types: Either they restrict
attention to Banach spaces or they cover the general theory in great detail. For the
kind of courses I have taught, those of the first type don’t cover a broad enough
range of spaces, while those of the second type cover too much material for the time
allowed. Don’t misunderstand; there is plenty of interesting material in both kinds,
and the interested party is invited to check them out. In fact, in this book, some side
topics (e.g., topological groups or Mahowald’s theorem) are treated, provided they
don’t go too far afield from the central topic. Also, some useful things are included
that are hard to find elsewhere: Sect. 5.2 contains results that are not new but are not
covered in most treatments (although Yosida [41] comes very close), for example.

The material here is based on a course I taught at the University of Washington.
The course lasted one quarter and covered most of the material through Chap. 5.
I was using Rudin [32] as a text. His early coverage of locally convex spaces is
excellent, but he discusses dual spaces only for Banach spaces. I used his book to
organize things in the course but had to expand considerably on the subject matter.
(Rudin’s book, by the way, is one of the few that does not fit the “two types”
dichotomy above. Neither do Conway [7] or Reed and Simon [29].)

The prerequisite for this book is the Banach space theory typically taught in a
beginning graduate real analysis course. The material in Folland [15], Royden [30],
or Rudin [31] cover it all; Bruckner, Bruckner, and Thomson [6] cover everything
except the Riesz representation theorem for general compact Hausdorff spaces, and
that appears here only in an application in Sect. 5.5 and in Appendix C. There are
some topological results that are needed, which may or may not have appeared in a
beginning graduate real analysis course; these appear in Appendix A.

One more thing. Although this book is oriented toward applications, the
beauty of the subject may appeal to you. If so, there is plenty out there to
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look at: Edwards [13], Grothendieck [16], Horvath [18], Kelley and Namioka [21],
Schaefer [33], and Treves [36] are good reading on the general subject. Bachman
and Narici [2], Narici and Beckenstein [27], and Schechter [34] do a nice job with
Banach spaces. Wilansky [39] updates with more modern concepts the functional
analysts have come up with (e.g., “webbed spaces”). Edwards [13], Phelps [28],
Reed and Simon [29], and Treves [36] have plenty of material on the interaction
of functional analysis with outside subjects. Also, Swartz [35] and Wong [40] are
recommended. Finally, Dieudonne [10] gives a very readable history of the subject.

Finally, some “thank you’s”: To Prof. Garth Warner and Clayton Barnes, for
comments and suggestions. To Owen Biesel, Nathaniel Blair-Stahn, Ryan Card,
Michael Gaul, and Dustin Mayeda, who took the original course. And (big time!) to
Mary Sheetz, who put the manuscript together. And a closing thank you to Elizabeth
Davis, Richard Kozarek, Ronald Mason, Michael Mullins, Huong Pham, Vincent
Picozzi, Betsy Ross, Chelsey Stevens, Megan Stewart, and L. William Traverso,
without whose aid this manuscript would never have been completed.

Seattle, WA, USA M. Scott Osborne
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Chapter 1
Topological Groups

1.1 Point Set Topology

Every locally convex space is a topological group, that is, a group that is also a
topological space in which the group operations (multiplication and inversion) are
continuous. A large number of the most basic results about locally convex spaces
are actually valid for any topological group and can be established in that context
with only a little additional effort. Since topological groups are important in their
own right, it seems worthwhile to establish these basic results in the context of
topological groups.

While the reader is assumed to be familiar with basic point set topology, there
are some twists that may or may not be familiar. These are not so important for
topological groups (though they are handy), but they are crucial for dealing with
locally convex spaces.

A notational point should be made before proceeding. If A is a subset of a
topological space, then its closure will be denoted by A~. This is because we
will need complex numbers, and @ will denote complex conjugation. Similarly, the
interior of A will be denoted by int(A). This is because “A°” has traditionally been
assigned a special meaning in the context of locally convex spaces (it is called the
“polar” of A).

There are basically three subjects to be discussed. The one most likely to already
be familiar is the notion of a net. While locally convex spaces can be studied without
this concept, some substitute (e.g., filters) would be necessary without them.

A net is basically a generalized sequence in which the natural numbers are
replaced by a directed set.

Definition 1.1. A directed set is a pair (D, <), where D is a nonempty set and <
is a binary relation on D subject to the following conditions:

(i) Foralla € D, < «.
(ii) Foralla, B,y € D, < B and B < y implies o < y.
(iii) Forall @, B € D, there exists y € D suchthate < y and 8 < y.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 1
DOI 10.1007/978-3-319-02045-7__1, © Springer International Publishing Switzerland 2014



2 1 Topological Groups

Note that (i) and (ii) make D look like a partially ordered set; conspicuous by
its absence is the antisymmetry condition. The lack of antisymmetry is important for
a number of applications (see below) and does not affect things much. The crucial
addition is condition (iii), which is what the word directed usually signifies.

For some reason, it has become traditional to denote the elements of a directed
set with lowercase Greek letters.

Definition 1.2. A net in a topological space X is a function from D to X, where
(D, <) is a directed set. This function is usually denoted by & +— x, (or & +—
Ya, or something similar). This net (x,) converges to x if the following happens:
Whenever U is an open subset of X, with x € U, then there exists ¢ € D such that

VBeD:a<f = xgel.

Note: As usual, we sometimes refer to the directed set as D, rather than the more
proper (D, <). Similarly, “a > B” means 8 < «. Also, as above, the net is usually
denoted by (x,) or {(x, : @ € D), and convergence to x is denoted by x, — x,
limx, = x, or limp x, = x. Since the notion of a net is a generalization of the
notion of a sequence (with N being replaced by D), this is consistent with standard
terminology for sequences.

Example 1 (cf. Bear [3]). Given a bounded function f : [a, b] — R, the Riemann—
Darboux integral can be defined as a net limit as follows. A partition P of [a,b] is a

finite sequence ¢ = xp < x1 < --- < x, = b, with P = {xq, x1, ..., x,}. Thatis, a
partition is a finite set P, with {a,b} C P C [a,b]. A tagging T of the partition P
above is a selection of points {¢1,...,t,} for which x;_; <t; < x;, and a tagged

partition is an ordered pair (P, T) for which P is a partition and 7 is a tagging
of P. The Riemann Sum S(P, T, f) for this tagged partition is the sum:

S(P.T. f) =D flt))(x; = xj-1)-

J=1

The directed set (D, <) is the set of all tagged partitions of [a, b], with (P,T) <
(P’,T') when P C P’. Note: The “ordering” ignores the tagging and so is not
antisymmetric. Darboux’s version of the Riemann integral is defined as

b
/ f()dx = lim S(P.T. f).

See Bear [3] for more details, including how to produce Lebesgue integrals as a net
limit.

The following three facts are elementary and provide typical examples of how
the flexibility in choosing D can be exploited.
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Proposition 1.3. Suppose X is a topological space. Then:

(a) If A C X, then A™ is the set of limits of nets from A.
(b) X is Hausdorff if, and only if, convergent nets have unique limits.
(c) If Y is a topological space, and f : X — Y is a function, then f is continuous

if, and only if, for any net (xy) in X:limx, = x = lim f(xy) = f(x).

Proof. (al) Suppose (x,)is anetin A4, and x, — x. If U is any open neighborhood

(a2)

(bl)

(b2)

(ch)

(c2)

of x, then there exists o s.t. 8 > o = xg € U. In particular, x, € U N 4, so
U N A # 0. This just says that x is adherentto A, so x € A™.
Suppose x € A™. Set

D ={U :x €U andU is open}
U-V&UCV

D is directed. If U € D, then U N A # @ since x € A™; let xy be some
element chosen from U N A. (Yes, the axiom of choice is used here.) By
definition, (xy)isanetin A,and V > U = xy € V C U, so xy — x.
Suppose X is Hausdorff. To show that nets have unique limits, suppose some
net (x, ), defined on a directed set D, has (at least) two distinct limits x and y,
x # y.Let U and V be disjoint open neighborhoods of x and y, respectively.
Since x, — x, there exists §1 € D s.t. « > f; = x, € U. Since x, — y,
there exists 8, € D s.t.a > B, = x, € V. But D is directed, so there exists
y € Dsty>pBrandy > B, fromwhichx, e UNV.ButUNV =9, a
contradiction.

Suppose X is not Hausdorff. We construct a net with (at least) two distinct
limits. Since X is not Hausdorff, there exist x,y € X, x # y, such
that whenever U and V' are open neighborhoods of x and y, respectively,
necessarily U NV # @. Set

D ={U,V):xeU,y € V,U and V both open};
U V)y<WU, V)& U>UandV D V).

Ifao = (U, V), let x, be some element chosen from U N V. Note that D is
directed: It is clearly partially ordered, and (U, V) < (U N U,V N V) and
(U, V) < (UNU,V NV).Furthermore, given an open neighborhood U of x,
y=U.V)> UX)= X, € U C U, so by definition x, — x. Similarly, if
V is an open neighborhood of y, theny = (U, V) > (X, V) = X, € vVcv,
SO X — ).

Suppose f is continuous, limx, = x, and U is open in Y with f(x) € U.
Then x € f~1(U),and f~'(U) is open, so there exists a such that 8 > o =
xg € f71(U) = f(xp) € U. This is convergence.

Suppose f is not continuous. Then there exists A C Y, with A4 closed, such
that £ ~'(A) is not closed. By part (a), there is a convergent net {x,), with
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X¢ € f7(A), for which x = limx, ¢ f~'(A4). But now f(x) ¢ A, and
f(xy) € A, so part (a) says that “lim f(x,) = f(x)” is impossible. O

Before leaving the subject of nets, there are three last “basic” considerations.
Suppose (x,) is a net defined on a directed set D. A subset D’ C D is called cofinal
if for all @ € D, there exists 8 € D’ such that 8 > «. (Note: This usage seems to
be firmly imbedded in the topological and algebraic literature, even though it is
inconsistent with the technical meaning of the prefix “co” in the category theoretic
literature.)

Proposition 1.4. Suppose X is a topological space, {xo : @ € D) is a net in X,
and D' is cofinal in D. Then D' is directed, and limp x, = x = limp/ x, = Xx.

Proof. D’ is directed: If o, 8 € D’, then o, B € D, so there exists y € D with
y > aand y > B. D’ is cofinal, so there exists § € D’ with § > y, whence § > o
and § > B.

limpr x, = x if limp x, = x: If U is an open neighborhood of x, then there
exists @ € D with xg € U whenever B > «. There exists y € D’ with y > «, since
D’ iscofinal. If § € D’,and § > y,thend > o, so x5 € U. O

Our next consideration is the notion of a cluster point of a net. This echoes the
notion of a cluster point of a sequence: If (x, : @ € D) is a net in a topological
space X, and x € X, then x is a cluster point of (x,) if the following happens:
If U is an open neighborhood of x, and o € D, then there exists a B € D with
B > a and xg € U. Note that a limit of a convergent net is a cluster point of that
net (Exercise 1).

Proposition 1.5. Suppose X is a compact topological space, and (x, : @ € D) is
anetin X. Then (x,) has a cluster point in X.

Proof. Forall @ € D, set
Ay ={xg: p > a}and
Cy =4,.

Observe that if «, § € D, then there exists y € D for which y > « and y > B.
Hence A, C Ay () Ag, so that C, () Cp is a closed set containing A,. Thus C, C
Co () Cg. Since x, € A, C C,, this shows that the family # = {C, : @ € D}
has the finite intersection property, since each member of .% is nonempty, and the
intersection of any two members (and hence any » members, by induction on n) of
F contains a member of .%. Since X is compact, (). # @, that is there exists
x € X such that x € C, for every . But that just means that whenever U is an
open neighborhood of x, and « € D, necessarily U (| Ay # 9 (since x € A).
That is, there exists xg € U for some § > «. O

The final notion is that of a subnet. It is rather complicated, but it does arise in
Sect.5.7. Like a subsequence, a subnet involves a reparametrization of a net, but
the manner in which this happens is much more general; so general, in fact, that a
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subnet of a sequence need not be a subsequence. Suppose (x, : @ € D) is a net.
A subnet is defined as follows. One has another directed set (D', <) and a function
o'+ @(a’) from D’ to D for which (roughly speaking) ¢(«’) — oo. That is, if
a € D, then there exists a 8/ € D’ for which y’ > B’ implies ¢(y’) > «. Note that
the original net {x,) is not part of the definition yet; the condition only looks at D,
D’, and ¢. The actual subnet is the function &’ > Xy (ar)-

There are a few exercises at the end of this chapter that should illuminate this
concept. The appearance of a subnet in Sect. 5.7 will be self-contained, but should
be clearer after trying out these exercises.

The next major topic has come in the back door already. In the preceding, observe
that the phrase “open neighborhood” was used consistently, rather than the simpler
“neighborhood.” That is because we do

NOT

assume that neighborhoods are open. This is crucial for functional analysis,
although it does not seem to be so essential for topological groups per se. It is
equally important NOT to require that a neighborhood base consist of open sets.
[For those not familiar with the general notion, a set A is a neighborhood of p
when p € int(A).] There are two kinds of bases for a topology .7 on X. A (global)
base is a set 8 C .7 such that

VxeX,Ue TwithxeU:d3BeABst.xe BCU.

Note that a global base always consists of open sets. Not so for neighborhood
bases. If x € X, then a neighborhood base %, for x is a collection of subsets of X
satisfying the following two conditions:

(i) Each B € %, is a neighborhood of x; that is, x € int(B).
(i) If U is open, and x € U, then there exists B € %, suchthat B C U.

Observe that if we are given a neighborhood base 4, at each point x € X,
then these %, ’s do, in fact, determine the topology: If U is a subset of X with the
property that for all x € U there exists B € %, such that B C U, then any such
x € U satisfies x € int(B) C int(U), that is all points of U are interior points.
Hence U is open. [This is why condition (i) is present.]

In functional analysis, there is a standard construction of neighborhood bases
which is used again and again, and it automatically yields closed sets; in fact, sets
that are closed in coarser topologies, a fact frequently exploited.

Observe that if 2 is a global base, then %8, = {B € % : x € B} is alocal base
at x. However, local bases in general will not amalgamate into a global base, since
local bases do not need to consist of open sets.

There is a subtlety built into the preceding. Note that condition (ii) reads “B C
U” and not “int(B) C U”; all of B has to fit inside U. This leads to our final topic
of this section, the meaning of the adverb “locally.”
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Suppose X is a topological space, perhaps with other structure as well. Let
[adjective] denote a property that “makes sense” for subsets of X; that is, given
A C X, then either A is [adjective] or it is not. Purely topological examples
abound: open, closed, compact, connected, disconnected, finite, etc. Normally,
[adjective] will be an adjective, but sometimes it is a participle or a short phrase.
With one exception, a space X has the property [adjective] locally (phrased as “X
is locally [adjective]”) when each point of X has a neighborhood base consisting of
[adjective] sets.

This is consistent with the usual definition of “locally connected,” even though
that definition would really be stated here as “locally open-and-connected.” See
Exercise 7 at the end of this chapter.

The above definition of “locally” is not consistent with the traditional definition
for “locally compact.” A space is called locally compact when each point has a
compact neighborhood, although some texts (e.g. Royden [30] and Rudin [31])
require that each point have a neighborhood with a closure that is compact. For
Hausdorff spaces (the only ones we shall use the term “locally compact” for), they
are equivalent, although in general they are not: Munkres [26, p. 185] goes so far
as to say, “Our definition of local compactness has nothing to do with ‘arbitrarily
small’ neighborhoods, so there is some question whether we should call it local
compactness at all.” However:

Proposition 1.6. Suppose X is a Hausdorff space. Then the following are equiva-
lent:

(i) Each point of X has a neighborhood base consisting of compact sets.
(ii) Each point of X has an open neighborhood with compact closure.
(iii) Each point of X has a compact neighborhood.

Proof. Clearly (i) = (iii) and (ii) = (iii), whether X is Hausdorff or not, while (iii)
= (ii) for Hausdorff spaces by taking a compact (hence closed) neighborhood K of
apoint x : x € int(K), while int(K)~™ C K, so thatint(K)~ is compact.

To show that (ii) or (iii) (either will do) imply (i), appeal to the standard fact that
X isnow T3: If x € X, and U is open, with x € U, then there exist disjoint open
sets V and W with x € V and (X — U) C W.If K is a compact neighborhood
of x, then K N V™~ is a compact neighborhood of x (it contains int(K) N V'), and
Knv-cV-cX-WwWcU. O

In general, (i) = (iii) and (ii) = (iii), and that is it; see the exercises at the end
of this chapter.

For the record, we list the following standard definitions for a topological space
X:

1. X is Tp if and only if whenever x, y € X, with x # y, there exists an open set
U that contains one point only from {x, y}.

2. X is T; if and only if points are closed.

3. X is T; if and only if X is Hausdorff.
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4. X is regular if and only if whenever x € X and A C X, with A closed and
x ¢ A, there exist disjoint open U and V withx e U and 4 C V.

5. X is T3 if and only if X is regular and 77.

6. X is normal if and only if whenever A and B are disjoint closed sets, there exist
disjoint open sets U and V with A C U and B C V.

7. X is Ty if and only if X is normal and 7.

We close this section with a result illustrating the utility of the adverbial approach
to the meaning of “locally.”

Proposition 1.7. Suppose X is a topological space. Then X is regular if, and only
if, X is locally closed.

Proof. First, suppose X is regular, x € X, and U is open, with x € U. Then
A = X —U is closed and does not contain x, so there exists disjoint open V' and W
withx e VandAC W.Butnowx e VC V- CX-WCX—-A=U,soV™
is a closed neighborhood of x which is contained in U'.

Now suppose X is locally closed, and x € X, A C X, with A closed and x ¢ A.
Then X — A is openand x € X — A, so there exists a closed neighborhood C of x
with C C X — A.Butnow x € int(C) and A C X — C, while int(C) and X — C
are disjoint open sets. O

1.2 Topological Groups: Neighborhood Bases

As noted earlier, a topological group G is a set endowed with two structures, a group
structure and a topological structure. Specifically, G is both an abstract group and
a topological space, with the two structures being compatible with each other. That
is, the two maps

GxG—>G:(x,y)—>Xxy

G—>G:x—x!

are assumed to be continuous. Eventually, the Hausdorff condition will be imposed,
but for now the above is all that will be assumed.

For further reading, two books (Dikranjan, Prodonov and Stayanov [11], and
Husain [19]) are recommended.

Examples. (1) (R, +), usual topology on R. (2) Any group, with the discrete
topology. (3) Any group, with the indiscrete topology. (4) Matrix groups: The set of
n x n invertible matrices with real (or complex) entries forms a topological group,
where the topology is the usual Euclidean topology from R" (or (C"Z). S)IfXisa
Banach space, then the set of all bounded linear bijections forms a group. (Inverses
are bounded, thanks to the open mapping theorem.) In the operator norm topology,
this produces a topological group. [Inversion is continuous because 7! — Tn_1 =



8 1 Topological Groups

T—YT, —T)T; !, sotoshowthat T, - T = T, ! — T, it suffices to show that
T,~! stays bounded. This happens because |T7'| < M = |T(x)| > M~ '|x|,
so once | T — T,|| < M™'/2, one gets that ||T,(x)|| > (M~'/2)|x], giving
17,71 <2M ]

NONEXAMPLES: (1) R, with the “half-open interval topology,” for which the set
of all half-open intervals [a,b) is a global base (this is sometimes called the
“Sorgenfrey line”), is an example for which addition is continuous but negation is
not, so (R, +) is not a topological group with this topology. (2) Z, with the cofinite
topology, is an example for which negation is continuous but addition is not, so
(Z, +) is not a topological group with the cofinite topology.

Some things really are obvious. For example, multiplication is jointly continuous,
hence is separately continuous. This just means that left multiplication and right
multiplication are both continuous. These then automatically become homeomor-
phisms, since for example, x +— ax has x +— a 'x as its inverse map. In
particular, all inner automorphisms are also homeomorphisms. Inversion is also a
homeomorphism. Also, a neighborhood base at the identity, e, can be either left
multiplied or right multiplied by any a € G to get a neighborhood base at any point.
Also, the opposite group, G°P with the same underlying set and topology but with
multiplication reversed (¢ * b = ba) is also a topological group.

Suppose 4, is a neighborhood base at e. The following properties now must
hold:

(i) If By € 4,, then since inversion is continuous, there exists B, € %, such that

By C By. (Here, B! = {b™': b € B}.)

(i) If B| € Z., then since multiplication is jointly continuous, there exist B,, B3 €
A, for which B, B; C By. (Here AB = {ab :a € A,b € B}.)

(iii) If B, € %,, then since inner automorphisms are homeomorphisms, for all
g € G there exists B, € %, such that gB,g~! C By.

(iv) Finally, since the intersection of two open sets is open, for all Bj, B, € %,
there exists By € 4, such that B3 C B; N B,.

Condition (iv) is what we would normally impose on any neighborhood base;
the rest come from the topological group structure. It turns out that these conditions
suffice to manufacture a topological group from an abstract group.

Proposition 1.8. Suppose G is a group, and %, is a nonempty collection of subsets
of G; each containing the identity, e; satisfying:

(i) Forall By € 9B, there exists B, € B, s.t. 32—1 C B;.

(ii) Forall B, € 9B, there exist B>, B3 € %, s.t. B,B3 C Bj.
(iii) Forall By € B, for all g € G there exists By € B, s.t. gBg~' C By.
(iv) Forall By, By € 2B, there exists By € B, s.t. B3 C By N B,.

Set

T ={UCG:¥YxeU3IB e B, stxBCU).
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Then . is a topology, and with this topology G is a topological group. Finally, for
all g € G, gPB. is a neighborhood base at g for this topology, as is B.g.

Proof. 1. 7 is atopology: Suppose (U, : @ € 0} is a collection of members of 7.
If x belongs to their union, U, then x € U, for some o, so xB C U, C U for
some B € B, . If U, U, € 7, and x € U; N U,, then there exist By, B, € %,
with xB; C U; and xB, C U,. there exists By € %, with B3 C B; N By, so
xB3 C x(B; N By) = xB; N xB, C Uy N U,. Finally, @ € 7 trivially, while
G € 7 since %, is nonempty.

2. If A C G, then int(A) = {x € A: there exists B € %, s.t. xB C A}: Set

U={xeA:3B e HB,st.xB C A}.

Then U C A by definition, while if V' is open with V' C A, necessarily for all
x € V thereexists B € %, withxB C V C A,s0V C U. Hence if U is open,
then it will be the largest open subset of A, and so will be int(4). While our
list of properties (i)—(iv) do not appear to guarantee that U be open, the required
property has snuck in via condition (ii).

U is open: Suppose x € A, and B, € %, is such that xB;, C A. By
condition (ii), there exists By, B3 € %, with B,B; C By.If b € B,, then
xbB; C xByB3; C xB; C A,so xb € U. In particular, xB, C U. So: Given
x € U, we manufacture B, with xB, C U, so U is open.

3. %, is a neighborhood base at e: If B € %, then eB = B C B, so by the
above, e € int(B).If U is open, with e € U, then by definition of .7 there exists
Be#B, withB=eBCU.

4. Multiplication is jointly continuous: Suppose U is openin G, and xy € U. There
exists B; € %, with xyB; C U. There exist B, B; € %, with B,B; C Bj.
There exists B, € %, with y~!' B,y C B,. Hence

xByyBs; = xyy_lB4yBg CxyByB; C xyB; C U.

In particular, int(xB4) - int(yB3) C U. But xBy C xB4 = x € int(xBy), while
similarly y € int(yBj3), so int(xBy) X int(yBj3) is a neighborhood of (x, y) in
G x G which multiplication maps into U .

5. Inversion is continuous: Suppose U is open, and V = {x € G : x~! € U}.
Suppose x € V, so that x™' € U. There exists B; € %, such that x™'B; C U.
There exists B, € %, such that xB,x~! C Bj. There exists B3 € 4, such that
B;!' C B,. Then

(xB3)" ! = B3_1)c_1 C Bx ' =x""xBx' cx7!'B, CU,

so xBs C V. Hence V is open. Finally,
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6. Forall g € G, both g%, and A, g are neighborhood bases at g: Since G is now a
topological group, both left and right multiplication by g are homeomorphisms,
so this follows from (3). O

Examples. Proposition 1.8 yields a lot of examples. Note, for example, that if
B, consists of subgroups, then conditions (i) and (ii) are automatic, while (iii)
and (iv) can be enforced by using a condition for which conjugate subgroups and
intersections satisfy the condition. (1) %, = all subgroups of finite index. This
actually gives an interesting topological group structure on (Z, +). (2) By analogy
with (1), let V' be an infinite-dimensional vector space over a field, and set B, =
all subspaces of finite codimension. When the field is R or C, this will yield a
topological group structure that is not a topological vector space. (3) S(N), the
bijections of N with itself. 2, = the stabilizers of finite subsets of N. This topology
will provide a counterexample in Sect. 1.5.

Our next result concerns closures. It looks backwards, a fact that we can exploit.

Proposition 1.9. Suppose G is a topological group, and A C G. Suppose B, is a
neighborhood base at the identity, e. Then

A" = ﬂ AB.

Be%,

Proof. We show that if x € A7, then x € AB forall B € %,; whileif x ¢ A™,
then x ¢ AB for some B € %,.

First, suppose x € A~. If B € %,, then x(int(B))~! N A # @, so there exists
a € Aand b € int(B) such that xb~' = a. But then x = ab € Aint(B) C AB.
Hence x € AB for all B € %..

Next, suppose x ¢ A~. Thenx € G — A~, an open set, so x ! € (G — A7),
soe € (G — A7)"'x. Hence there exists B € %, with B C (G — A7) 'x, so
Bx'c(G—A4)s0oxB' CcG—-—A4" C G—-A, thatisxB™'nA = 0.
Butx = ab = xb™' =a,sox € AB = xB™' N A # (. Hence x ¢ AB for
this B. O

Corollary 1.10. If G is a topological group, and B, is a neighborhood base at the
identity e, then {B~ : B € %,} is also a neighborhood base at e. In particular, G
is regular.

Proof. If B € A,, then e € int(B) C int(B~) since B C B~. It remains to show
that any open set U, with e € U, there is a B € %, with B~ C U. But there
exists B, € A, with B; C U, since %, is a neighborhood base; while there exist
B,, B; € %, with B, B3 C By, by condition (iii) on neighborhood bases at e. But
B; C B, B3 by Proposition 1.9, so

BZ_ C B,B3; C By C U.
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This shows that 4, = {B~ : B € %,} is also a neighborhood base at e, so for
all g € G, g2, is a neighborhood base at g consisting of closed sets. Since G 1is
locally closed, it is regular (Proposition 1.7). O

Corollary 1.11. Suppose G is a topological group, with identity e, and B, is a
neighborhood base at e. Then the following are equivalent

(i) G is Ty.
(ii) G is Ty.
(iii) G is T>.
(iv) G is Ts.
(v) {e} is closed.
(vi) N B={e}.

BEB,
Proof. We know that

(i)

7

N
)

(iv) = (i) = (i)

for general topological reasons. Corollary 1.10 says that (ii)) = (iv), since regular
+T, = T;. Also, (v) = (vi) = (ii), since by Proposition 1.9:

Given (v): {e} = {e} = ﬂ eB = ﬂ B; and

BeAB, Be%,
Given (vi): {g}” = ﬂ gB = g( ﬂ B) = gle} = {g}.
BeAB, Be%,

The proof is completed by showing that (i) = (v). This is done by showing that

if g € Gand g # e, then g ¢ {e}~. Since we are only assuming 7y, there are two
cases:

1. There exists open U with g € U and e ¢ U. Then {e} C G — U, a closed set, so
{e}7 € G—-U.ButgeU,sog ¢ {e}".

2. There exists open U with e € U and g ¢ U. Then there exists B € %, with
B CU,so

g¢UDBD ﬂ eB' = {e}”.
B'e%,
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So far, our neighborhood bases at e have been unrestricted. It is often helpful to
have bases that are more restricted. The easy, general case, is as follows:

Proposition 1.12. Suppose G is a topological group, with identity e. Then there is
a neighborhood base %, at e such that for all B € %, : B = B~'. Furthermore,
the members of B, may also be assumed to all be open, or they may be assumed to
all be closed.

Proof. Start with any neighborhood base %, at e; even {U : U open, e € U} will
do. Set

B, ={BNB™':BeB)

Since inversion is a homeomorphism, %, will consist of open sets if 4, did, and %,
will consist of closed sets if 2., did. Also, the members B, of %, satisfy, Bs = B, L
and for all B € &),

e € int(B) N (int(B))~! = int(B) Nint(B~") = int(B N B™!).

To show that %, is a neighborhood base at e, it only remains to show that if U is
openand e € U, then there exists B € %, with BN B~! C U. But this is automatic
when B C U, which does happen since %, was a neighborhood base. O

Our final topic concerns a special type of neighborhood base at e that exists when
the group is first countable. This construction is used frequently to get at various
results.

Theorem 1.13. Suppose G is a first countable topological group, and U is an
open set containing the identity, e. Then there exists a neighborhood base 9B, =
{B1, B,, B3, ...} at e such that:

(a) By Cc U, and
(b) Forall j : B; = Bj_l D B]Z+1.

Furthermore, all the sets B; may be assumed to be open, or all the sets B; may be
assumed to be closed.

Proof. Start with a countable neighborhood base %, at e, and manufacture B =
{BNB~': B e B,}; B is also countable. It is a neighborhood base by the proof
of Proposition 1.12. If you want open sets, set #," = {int(B) : B € £}, if you
want closed sets, set )" = {B~ : B € 4/}. The latter is a neighborhood base via
Corollary 1.10. Z, will be a subset of £, so it will be countable, and will consist
of open or closed sets if 28, did.

Choose any B; € ) with By C U. Enumerate %) as By = B(l),
B(2), ..., and define B; recursively as follows:

Given B, choose B € ! with BV C B; N B(j + 1). Choose B?,

B® ¢ B with BYB® ¢ B0,
Choose Bj+l € 332// with Bj-H c B®nN BB,
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Observe that BJ2.+1 C B®B® c BW C B;. Also, if V is open, with e € V,
then there exists B(k) € %) with B(k) C V, so that:

1. If k =1,then By = B(1) C V.
2. Ifk = j 4+ 1, then
Biy1ic B cBYCB(j+1)cCV.

This just shows that %, = {Bj, B, ...} is also a neighborhood base at e. O

1.3 Set Products

We already have one result concerning products, namely, the formula for closures
in Proposition 1.9. We will need a lot more. Some simple observations first.

1. A and B are subsets of any group, set A~! = {a™! : a € A} and AB = {ab :
a € A,b € B}. The following rules are direct:
(i) AB=JaB =1 4b
a€A beB
(i) (AB)™'=B7'47!
(iii) A(BC)=(AB)C ={abc:ae€ A,b e B,ceC}.
(iv) A(BNC)C ABNAC; (AN B)C C AC N BC.
(v) ABBUC)=ABUAC;(AUB)C = AC U BC.
(Vi x e AB & xB'NA#0 < A7'xNB #0.

Some of these look like conjuring tricks. In fact, the first time you see rules like
these you should be suspicious. Rule (ii), for example, comes from properties of
quantifiers:

x € A(BC) & Jae A,y € BC withx =ay
< Jdae A, b e B, ¢ € C withx = abc
< dceC,da e A, 3b € B withx = abc
< dceC,dz€ AB withx = z¢
< x € (AB)C.
As for (vi), note that x = ab < xb~! = a < a~'x = b, no matter what x, a,

and b are. Hit this with some existential quantifiers, and you get (vi). The others
work out just as quickly and are left as an exercise.

2. The topological properties of products seem to either come easily or with
difficulty, with no in-between. The early ones are:
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(1) If A or B is open, then AB is open, since rule (i) writes AB as a union of
open sets.

(i) If A and B are compact, then AB, as the continuous image of A x B under
multiplication, is compact.

To get much further, we need some kind of uniform separation result. The
following result covers this.

Theorem 1.14. Suppose G is a topological group, and suppose P, is a neighbor-
hood base at the identity, e. Suppose A is a closed subset of G and K is a compact
subset of G, with A N K = @. Then there exists B € %, suchthat AB N KB = 0.

Proof. The proof comes in two steps.
Step 1. There exists B € %, for which (AB)™ N K = . Suppose not. Set
g = (AB)"NKand 6 = {Cp : B € A.}. € is a collection of (relatively)
closed, nonempty subsets of K. If By, B, € Z,, then there exists By € %, with
B3 C B1 N By, so

AB; C A(ByN By) C AB, N AB, C (AB))™ N (AB,)",

so that (AB3)~, as the smallest closed set containing A B3, satisfies (AB3)~ C

(AB1)™ N (ABy)~. Intersecting with K, we get that Cg, C Cp, N Cp,. An easy

induction on n now shows that the intersection of # members of ¥ contains a

member of ¥, and so is nonempty. That is, € has the finite intersection property.

Since K is compact, this means that there exists x € K with x € Cp forall B € Z,.
This cannot happen. Since x € K, and A is closed, by Proposition 1.9:

x¢gA=A4"= () 4B.

BB,

That is, there exists By € %, with x ¢ AB;. There exist By, B; € %, with B, B3 C
By, so that (again by Proposition 1.9):

x ¢ ABy D A(By;B3) = (ABy)B; D (AB;)™, acontradiction.

Step 2. The theorem is true. Choose B; € %, for which (AB;)"NK = @. Choose
B,, B3 € 9, for which B, B; C B;.Choose By € %, for which B4 C B3_1. Choose
B € A, for which B C B, N By. That’s our B.

Suppose x € ABN KB, thatis x = ab = gb witha € A, g € K,and b, b € B.
Then g = abb™'.Buth € B C By C By 1,sob I ¢ B3, whileb € B C By, so
g = abb™! € AB,Bs C ABj, which s disjoint from K. This is a contradiction. 0O

Corollary 1.15. Suppose G is a topological group, and suppose A is a closed
subset, and K is a compact subset. Then AK and K A are closed subsets of G.

Proof. AK is closed: It suffices to show that x ¢ AK = x ¢ (AK)™. Suppose
x ¢ AK.Then A~'x N K = @ by property (vi) of set products. A is closed,
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so A~! is closed, as is A™'x. By Theorem 1.14, there exists B € %, for which
A7'xB N KB = @; in particular, A”~'xB N K = @. If some xb = ag (b € B,a €
A,g € K),thena™'xb = g € A7'xBNK = 0, acontradiction,so xBNAK = @.
Since x B is a neighborhood of x which is disjoint from AK, x ¢ (AK)~.

As for KA, use the above:

KA =(AT'K™H7! and A7'K ! is closed.
O

These results apply primarily to quotients, the subject of the next section, but one
loose end remains.

Proposition 1.16. Suppose A and B are subsets of a topological group G. Then
(A7)(B7) C (4B)".

Proof. If a € A, set L,(x) = ax. L, is continuous, so L '((AB)7) is closed.
L,(B) =aB C AB C (AB)",s0 B C L;'((AB)™): thus, B~ C L;'((AB)").
Hence a(B~) C (AB)~. Letting a float, A(B~) C (AB)~.

If b € B7, set Ry(x) = xb. Ry is continuous, so Rb_l((AB)_) is closed. By
the above, Ab C (AB)7, so Ry(A) C (AB)7, thatis A C Rb_l((AB)_); thus
A™ C Rb_l((AB)_). Hence (A7)b C (AB)~. Letting b float, (A7)(B~) C (AB)".

O

1.4 Constructions

There are various ways of making new topological groups from old ones. Here, we
shall stick to those which will be relevant to locally convex spaces. Products come
first.

The product topology is usually characterized as the coarsest topology on the set-
theoretic product for which the projections onto the factors are continuous. There
is an alternate characterization, which comes from category theory, which is more
useful here. The underlying theme will recur two more times in this section, and
another time in the exercises. It is not particularly difficult, but it is peculiar, and
takes getting used to.

We need a lemma first.

Lemma 1.17. Suppose X and Y are topological spaces, f : X — Y is a function,
and B is a subbase for the topology of Y. If f~Y(B) is openin X for all B € %,
then f is continuous.

Proof. Suppose f~'(B) is openin X for all B € . Let %, denote the set of all
finite intersections of members of 4. Since f~'(B;N---NB,) = f~Y(By)N---N
f7YBy) : f7(B)isopenin X forall B € %,. But %, is a base for the topology
of Y, so any open subset of Y is a union of members of %y. If U = UB;, then
Y U) = f~Y(UB;) = Uf~!(B;)is openin X. O



16 1 Topological Groups

Now. to the point:

Theorem 1.18. Suppose (X; : i € &) is a family of topological spaces. Then
the product topology on [ | X; is the unique topology with the following property:
Whenever Y is a topological space, and

ft=(f):Y>]]X

ies
is a function, then £ is continuous if, and only if, every f; : Y — X; is continuous.

Proof. Let w;, : [[ Xi — Xj, be a projection. If f is continuous, then each f;, =
7, o f is continuous. On the other hand, if each f; is continuous, then since

X;if i # i »
! _ . o
(llel% Uio ifi = 10}) f;o (UO)

£~1(U) when U is any subbase element, is open, so f is continuous by Lemma 1.17.
Thus, the product topology has the property in question.

Now for uniqueness. Here’s where things get strange. Suppose .7 is any topology
on the set [ X; with the property that functions from some topological space Y to
[T X; are continuous exactly when their coordinate functions are continuous. Then
the identity map from ([ | X;, 7) to itself is certainly continuous, so its coordinate
functions, the projections 7r;, must also be continuous.

Now suppose 7] and %, are any two topologies on [ X; with the property
that maps to [[ X; are continuous exactly when their coordinate functions are
continuous. Consider the identity map from ([ [ X;, Z) to ([ X;, Z3). The coor-
dinate functions are the projections to the factors, and these are now known to be
continuous, so this identity map is continuous. Reversing the roles of .7, and %,
this identity map must be a homeomorphism, so 7} = %. O

Corollary 1.19. Suppose (X;;, (i, j) € & x _#) is a family of topological spaces
parametrized by a set product & x _f . Then the set bijections

l_[ l_[ Xij ~ l_[ Xij~ l_[ HXi,j

ies je g (i.j)esx g jesies

are homeomorphisms.

Proof. The underlying idea is pretty simple: Show that the product-of-product
topology on [[[]X;; has the property specified in Theorem 1.18. Since the
situation is symmetric, we use the first bijection. Suppose Y is a topological space,
and f = (f; ;) is a function from Y to [] , ]_[/ X; ;. Let f; denote the ith partial
coordinate function,

f,' Y > 1_[ X,"j.
jes
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Thatis, f; = (f;; : j € _#), with i fixed. Then f is continuous & foralli € .7,
f; is continuous < foralli € .# forall j € # f;; is continuous. Hence f is
continuous < all f; ; are continuous, i € .# and j € 7. O

Corollary 1.20. Suppose (G;,i € .7) is a family of topological groups. Then with
the product topology, [ | G; is a topological group.

Proof. 1. Inversion is continuous: Since (x;)~' = (x;!), the ioth coordinate

function of g > g7l is (x;) — xl.gl, that is it is the composite g +— ;,(g) —
7i,(g)~", a composite of two continuous maps.

2. Multiplication is continuous: Let ; : G; X G; — G; denote the multiplication
map. Then since (x;) - (y;) = (x;y;), the ipth coordinate of the multiplication
map is

proj. i
(Hie,ﬁ Gi) x (Hie,ﬁ Gi) ~ Hie,ﬁ(Gi X Gi) — Gio X Gio _0) Gio
T
Cor. 1.19
which is continuous. O

Note that the underlying idea of both parts is the same: The operation, with values
in [ ] G, is continuous because its coordinate functions are continuous. The diagram
that illustrates this for inversion is

roj. inv.
16 6, ™,
ies

Now to subgroups. Again, it all starts with a topology result.

Proposition 1.21. Suppose (X, Ix) is a topological space, and A is a subspace,
with subspace topology T4. Then T = Ty is the unique topology on A with the
following property: Whenever Y is a topological space, and f :' Y — Aisa
function, then f : Y — (X, Ix) is continuous if, and only if, f : Y — (A, ) is
continuous.

Proof. If f 1Y — Aisa function, thenforallU C X : f~'(U) = f~1(U N A).
But f~1(U) is a typical inverse image of a member of .7y, while f~'(U N A) is
a typical inverse image of a member of 7y, so 7 = 74 does have the property in
question.

Now for uniqueness, which follows the routine from the proof of Theorem 1.18.
Suppose .7 is a topology on A with the property in question. Let Y = (4, .7), and
Jf = identity map. This f is continuous from Y to (A4, .7), so it must be continuous
from Y to (X, Jx). That is, the inclusion (4, ) — (X, x) will automatically be
continuous.
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Now suppose .77 and 7, are two topologies on A with the property in question.
Consider the identity map: (4, 7)) — (A, Z3). The map from (4, 7)) — (X, Tx)
was just verified to be continuous, so (4, Z1) — (A4, %) is continuous. Reversing
the roles of 7] and %, this identity map must be a homeomorphism, so .7 = .
O

Corollary 1.22. Suppose G is a topological group, and H is a subgroup. Then with
the induced topology, H is a topological group.

Proof.
HxHGxG multiplication
and
H—G ﬂ) G
are continuous and take values in H. Apply Proposition 1.21. !

Quotients take a bit more discussion. The topological aspects do not require the
subgroup to be normal.

Suppose G is a topological group, and H is a subgroup. Let G/H denote the set
of left cosets of H. Set

Je/u ={UH/H : U openin G}.

Theorem 1.23. Suppose G is a topological group, and H is a subgroup. Then:

(a) g/ is a topology on G/H.

(b) The natural projection & : G — G/H is both continuous and open.

(c) If Y is a topological space, and f : G/H — Y is a function, then f is
continuous if, and only if, f o : G — Y is continuous.

(d) Tsyu is the only topology on G/H with the property described in (c): Suppose
T is a topology on G/H with the property that whenever Y is a topological
spaceand f : G/H — Y is afunction, then f : (G/H, ) — Y is continuous
& fom: G — Y is continuous. Then T = g n.

(e) If Y is a topological space, and f : G/H — Y is a function, then f is an open
map if, and only if, f o : G — Y is an open map.

(f) If B, is a neighborhood base at the identity e € G, then {BgH/H : B € %,}
is a neighborhood base at gH for I n.

(g) If H is closed in G, then G/H is Hausdorff.

(h) If H is a normal subgroup of G, then with the topology Js/u, G/H is a
topological group.

(i) If (Gi,i € Z) is a family of topological groups, and H; is a subgroup of G;
for each i, then the natural bijection
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(1), (1)

is a homeomorphism.

Proof. These nine properties are not proved in the order given, but (a) definitely
comes first. Let 7 : G — G/H be the natural map.

() 9 =0H/H € J5/p and G/H = GH/H € Jg5/p. VU;H/H = Un(U;) =
7 (UU;) = (UU;)H/H since direct images preserve unions. Direct images do
not preserve intersections, though.

Suppose U and V are open in G. Then so are UH and VH . Clearly, (UH N
VHYH/H Cc UH/H N VH/H. Suppose xH € UH/H N VH/H. Then
xH C UH,sox € UH; similarly, x € VH.Hence x ¢ UH N VH,soxH €
(UHNVH)H/H.Thus UH/HNVH/H = (UH NVH)H/H € Jg/u.

(b) Since n(U) = UH/H, 7 maps the topology of G onto J,y. Since it takes
values in Jg/y, 7 is open. But x7'(UH/H) = UH is also open, so 7 is
continuous.

(c) Suppose f : G/H — Y is a function, where Y is a topological space. If
f is continuous, then f o 7 is continuous since 7 is continuous. If f o &
is continuous, and U is open in Y, then (f o w)~'(U) is open in G, so
7 ((f om)™'(U)) is open in G/H since 7 is an open map. But f~'(U) =
7 ((f om)™'(U)):

xHe f7l (U)o f(xH)eU & fon(x)eU
sxe(fonm) W (U) e xH C(fon) (V).

The last comes from the fact that 7 is constant on left cosets of H, so that
(f o)™ (U) = o~ (f~1(U)) is a union of left cosets of H. But with this in
mind,

xH C(forn)'(U)w xH en ((fom) ' (V)).

(d) Suppose .7 is a topology on G/H with the property specified. Set Y = G/H
with this topology, and f = identity. Then f is continuous, so f ow = 7 must
be continuous.

Suppose 7; and .7; are two topologies on G/H with the property specified.
Use 7 on G/H, and let Y be G/H with topology %5, f = identity. By the
above, f o = m is continuous, so f must be continuous. Reversing the roles
of 7] and %, this identity map must be a homeomorphism, so 7] = 7. (That
is three times now!)

(e) Note that if U is open in G, then

F(UH/H) = f o n(U).

f is open when all those sets on the left are open, while f o7 is open when all
those sets on the right are open.
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Note that if B € %,, then gH € (int(B))gH/H, an open subset of BgH /H,
so gH € int(BgH/H). If gH € UH/H, then gH C UH,so g € UH,
an open set. By Proposition 1.8, there exists B € %, with Bg C UH, so
BgH C UHH = UH,so BgH/H C UH/H. These are the neighborhood
base properties.
Suppose xH # yH. Then x ¢ yH. Now {x} is compact, while yH is
closed. Let %, be any neighborhood base at e consisting of open sets. Then
by Theorem 1.14 applied to the opposite group G°P (see p. 8), there exists
B € %, for which B{x} N ByH = §. Now ByH is a union of left cosets of
H , which are equivalence classes under “u ~ v when u~'v € H,” so nothing
in B{x} = Bx is equivalent to anything in By.

Hence ByH N BxH = @. Hence ByH /H is an open neighborhood of y H
which is disjoint from the open neighborhood BxH/H of xH .
It helps to do this before (h). Consider the natural bijection

@:(HG,-)/ [T#: )~ T]G/H.

ies i¢s ies

It suffices to show that @ is continuous and open. In view of parts (c) and (e),

it suffices to show that
¢Il—[Gi—>l_[Gi/Hi
ies ies

D ((gi)) = (g Hi)

is continuous and open. It is continuous by Theorem 1.18: The iy coordinate
function of @ is the composite [1G; — G;, — G;,/H,,, which is continuous
for every iy. To verify that @ is open takes a bit more work.

Suppose .7 is a finite subset of ., and U; is open in G; when i € .%. Then
clearly @ maps

I Giifi ¢ 7|
: U ifi e 7
i€s

The point is that this is onto: Suppose (g; H;) satisfies g; H; € U; H; / H; when
i € #.Then g;H; C U;H; wheni € %. Choose g € U; with g; H; = g/ H;,
wheni € .Z. Set g/ = g; wheni ¢ .%. Then @ ((g})) = (g/ H;) = (g H;).

So: @ maps a base element B of the topology on [| G; to a base element for
the topology on [[(G;/H;). In particular, @ (B) is open. But any open subset
is a union of such base elements, and

1—[{ Gi/H: ifi ¢ F

e UiH,'/H,' ifi e |~

@& (UB,) = U®(B,) is open.
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(h) Inversion is continuous from G/H to G/H by part (c): The composite

G P G/H inversion G/H

equals

inversion P

G G G/H

which is continuous.
Multiplication is continuous via the “diagram”:

GxG — (GxG)/(HxH)

& part (i)

(G/H) x (G/H) —= G/H.

By part (c), applied to (G xG)/(H x H), it suffices to show that G xG — G/H,
(x,y) = xyH, is continuous. But this, too, is the continuous composite

multiplication .
GxG G G/H.

|

One thing is worth noting regarding part (g): If G/H is just T, then the coset
H = eH is closed in G/H, so that H = Jr_l(H) is closed. Hence T and T, are
equivalent for quotient spaces of topological groups.

Part (g) does show the importance of closed subgroups. The following two results
take care of closures and identification of closed subgroups.

Proposition 1.24. Suppose G is a topological group, and H is a subgroup. Then
H™ is also a subgroup. If H is normal, then so is H™.

Proof. H™ is closed under multiplication, since (H™) - (H™) C (H - H)” =
H™ by Proposition 1.16. H™ is closed under the inversion map I since I is a
homeomorphism and so preserves closures:

I(H™) = (I(H))” = H™.

Finally, if H is normal, and g € G, then setting 7,(x) = gxg~
homeomorphism and again preserves closures:

w(H™) = (1, (H))™ = H™.

!'we get that 7y is a
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Proposition 1.25. Suppose G is a topological group with identity e, H is a
subgroup of G, and C is a closed subset of G with e € int(C). Finally, suppose
H N C isclosed. Then H is closed.

Proof. The open neighborhoods of e form a neighborhood base at e, so there exist
open neighborhoods W) and W, of e with Wi W, C int(C).

Suppose p € H™. Then le_l N H # @, so choose g € le_l N H. Then
plqge W soqg'p=(p7lq)7 € Wi.If U is openand p € U, then p €
pW,oNU,anopenset,so HN(pW,NU) # @. Thatis, (HNpW,)NU # @ whenever
Uisopenand p € U,so p € (HN pWy)".Hence g~ 'p € g7'(H N pW>)~ =
(g 'H N g~ ' pW,)~ since left multiplication by ¢~' is a homeomorphism. But
¢ 'H = H since ¢ € H and H is a subgroup, while ¢~' pW, C Wi W, C intC C
C,soq 'pe (HNC)".But HNC isclosed,sog~'p € HNC C H.Hence
p=q-q'peH. u!

The results about quotients are typically applied to normal subgroups, with parts
(c) and (e) of Theorem 1.23 being used when Y is also a topological group and
f : G/H — Y is a homomorphism. Our final result for this section clarifies just
what is required for homomorphisms in general.

Proposition 1.26. Suppose G and G are topological groups with identity elements
e and e, respectively. Suppose B, is a neighborhood base at e, and %; is a
neighborhood base at é. Finally, suppose f : G — G is a homomorphism.

(a) f is continuous if, and only if, e € int(f~'(B)) for all B € %;.
(b) f is an open map if, and only if, é € int( f(B)) for all B € A,.

Proof. (a) If fis contlnuous then f~ (1nt(B)) is open, and ¢ € f~l(¢) C
f- (1nt(B)) c f- (B) so e € intf~'(B). On the other hand, if ¢ €
int(f~'(B)) for all B € %;, suppose U is open in Gand g € f7I(U).
Then f(g) € U, so there exists B € %; with f(g)B C U. But f is a
homomorphlsm f(gx) = f(g9)f(x); taklng f(x) € B (ie.x € f (B))
f(gf7"(B)) C f(g)B C U, thatis gf '(B) C f7'(U). Butgf~ (B) is a
neighborhood of g, so g is interior to f ~'(U). Since g was arbitrary in £ ~(U),
£71(U) is open.

(b) If f is open, then é = f(e) C f(int(B)), an open subset of f(B), so e €
intf(B). (B € %,.) On the other hand, if ¢ € int(f(B)) for all B € %,,
suppose U is openin G. If g € U, there exists B € %, with gB C U. Hence

f(@)f(B) = f(gB) C f(U).

But by assumption, f(g)f(B) is a neighborhood of f(g), so f(g) is interior
to f(U). Since g € U was arbitrary, f(U) is open. O
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1.5 Completeness

At long last, it is time to assume that our topological groups are Hausdorff. This
is primarily motivated by Proposition 1.3(b): we want nets to have unique limits.
We shall define the meaning of “Cauchy” here (it is slightly subtle), and define
completeness as “Cauchy = Convergent,” as expected.

For metric spaces, a sequence (x,) converges to x when the terms x,, get close
to x. The sequence (x,) is Cauchy when the terms x, get close to each other. To
illustrate what that translates into for topological groups, consider a convergent
sequence x, — x in a topological group G, with identity e. If B is a neighborhood
of e, then for large n, x, € xB, thatis x"'x, € B.

Aha! That B is fixed; the group operation says (in a uniform sense) that x is close
to y when x~'y € B.

Definition 1.27. Suppose G is a Hausdorff topological group, and (x,) is a net in
G defined on a directed set D. (x,) is left Cauchy when the following happens: For
every neighborhood B of the identity e of G, there exists an &y € D such that

VB.yeD:f>ayandy > ay = x5'x, € B.

(x) is right Cauchy when the following happens: For every neighborhood B of e,
there exists an oy € D such that

V,B,yED:,B>a0andy>a0:xﬁxy_lEB.

A subset A of G is called complete when each left Cauchy net in A is convergent
to a point in A.

The terminology is slightly confusing. We should probably call A “left com-
plete,” but the terminology is usually applied to the whole group, where it does not
matter. For the record, a left Cauchy sequence is simply a left Cauchy net defined
on (N, <), and a subset A of G is sequentially complete when each left Cauchy
sequence in A is convergent.

Proposition 1.28. Suppose G is a complete Hausdorff topological group. Then
each right Cauchy net converges.

Proof. Suppose (x,) is a right Cauchy net defined on a directed set D. Set
Vo = X, !. Then for each neighborhood B of the identity e of G, there exists
ap € D such that forall B,y € D, B > apand y > g : xﬁxy_1 € B, that is

yﬂ_lyy € B.Thatis, (yy) is a left Cauchy net, so (y,) converges, say y, — y. Then

X¢ = y; ' — y~! since inversion is a homeomorphism. O
There are some basic facts that need checking. The most basic is the following.

Proposition 1.29. [n any Hausdorff topological group, a convergent net is both left
Cauchy and right Cauchy.
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Proof. Suppose (x,) is a convergent net defined on a directed set D, with x, — Xx.
Suppose B; is an open neighborhood of the identity e of G. Choose open
neighborhoods B, and Bj of e for which B;B; C Bj. Choose oy € D so that
B > ap = xp € x(B;' N Bs). Then for B,y > ap: x, € x(B;' N B3) C xBs,
o) x_lxy € B3, while x5 € x(BZ_l N B3) C xB; !, so x_lx,g € By, so
xElx = (x"'x)~! € B,. Hence x;lxy = xﬂ_lx -x7'x, € ByB; C By.

Right Cauchy is similar. Choose o; € D so that B > oy = x5 € (B, N
B;")x. Then B,y > a1 = xp € (B, N By)x C Bax, so xgx~! € B,, while
Xy, € (BN ByHx C By'x,s0 x,x~' € By, soxx; ! = (x,x7")7" € By and

;1:xﬁx_l-xx;leBzB3CB1. O

XgX

This suggests that maybe we should have defined “complete” by requiring nets
that are both left Cauchy and right Cauchy to be convergent. It turns out that
while this is a possible approach, it is just not as fruitful as the one here. There
do exist groups for which every right-Cauchy-and-left-Cauchy net converges, but
which are not complete. See Chap. 7 of Dikranjan, Prodanov, and Stoyanov [11] for

a discussion.

Example 2. Let S(N) denote the set of bijections of N with itself, and %, = all
stabilizers of finite subsets of N. As noted earlier, S(N) is a topological group with
A, as a neighborhood base at the identity, e. Set x, = (0,1,2,...,n). It is easy
to see that x,'x, fixes all integers < min(m, n), so (x,) is left Cauchy. It is not
right Cauchy, since x, x,, I'sends 0 to m (whenn < m) orm + 1 (whenn > m). In
fact, if you look at what x,, does “pointwise,” it converges to the function sending n
to n + 1, a function that is not onto. It follows that S(N) cannot be imbedded in a
complete group, since (x,) would have to converge there, and so would have to be
right Cauchy.

We have a few more results here for general nets. The first two are “expected”
from our experience with completeness in metric spaces, and are contained in the
following result.

Proposition 1.30. Suppose G is a Hausdorf{f topological group, and suppose A is
a complete subset of G. Then A is closed in G, and any closed subset of A is also
complete.

Proof. A is closed: Suppose x € A™. Then by Proposition 1.3(a), there is a net (x,)
defined on a directed set D such that x, € A and x, — x. But now (x,) is left
Cauchy by Proposition 1.29, so x, must converge to a point y € A by definition of
“complete.” Finally, y = x by Proposition 1.3(b): limits of nets are unique since G
is Hausdorff. Hence x = y € A. Thus, all points of A~ are in A4, so 4 is closed.
Suppose B C A, and B is closed. Let (x,) be a left Cauchy net in B, defined on
a directed set D. Then (x,) is a left Cauchy net in A, so x, — x € A since 4 is
complete. But B is closed, so x € B by Proposition 1.3(a). O

We recall a definition for our next result. Suppose G is a Hausdorff topological
group, and (x,) is a net in G defined on a directed set D. A point x € G is called a
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cluster point of (x,) if, for each open set U with x € U, and @ € D: there exists
BeDwithf >woandxg € U.

Proposition 1.31. Suppose G is a Hausdorff topological group, and suppose (X )
is a left Cauchy net with a cluster point x. Then x, — X.

Proof. Suppose (x,) is a left Cauchy net defined on a directed set D, with a cluster
point x. Suppose U is open, with x € U. Choose an open neighborhood B; of the
identity e in G for which xB; C U. Choose open neighborhoods B, and B3 of
e for which B,B; C By!. Choose oy € D for which B,y € D, f > ap,y >
@ = xz'x, € By. Choose y € D,y > ag for which x, € xBj, an open
set containing x. Then x~'x, € B;!, so xy_lx = (x"'x,)7! € B3, so xElx =
xﬂ_lxy~x;1x € B,B; C B! whenever 8 > . Butnow x~xg = (x/glx)_l € By,
so xg € xB; C U when B > ay. O

Corollary 1.32. Suppose G is a Hausdorff topological group, and K is a compact
subset of G. Then K is complete.

Proof. Suppose (x,) is a left Cauchy net in K. Then (x,) has a cluster point x € K
by Proposition 1.5, and lim x, = x by Proposition 1.31. O

Corollary 1.33. Suppose G is a Hausdorff topological group and suppose {xq :
a € D) is a left Cauchy net in G. Suppose D' is cofinal in D, and suppose
limp’ x4, = x. Then limp x, = x.

Proof. In view of Proposition 1.31, it suffices to show that x is a cluster point of
(xq : @ € D). Butif U is an open neighborhood of x, then there exists 8 € D’ such
thaty > fandy € D’ = x, € U. Now suppose & € D. There exists y € D s.t.
y > a and y > B since D is directed, and there exists § € D’ s.t. § > y since D' is
cofinal. Butnow § > y > fB,s0xs € U,and § > y > o, 508 > «. Thatis, x is a
cluster point of (x, : & € D). O

There is one consequence of the above: Our definition of “complete” is not foo
loose. If it were, we would not be able to prove Proposition 1.31 or Corollary 1.32.

These are the basics for completeness. A lot more can be said when our Hausdorff
topological group is also first countable, enough for a section all its own.

1.6 Completeness and First Countability

One fact we have gotten used to when working with metric spaces is that sequences
are “enough.” Does that apply to completeness as well when groups are first
countable? Yes!

Theorem 1.34. Suppose G is a first countable Hausdorff topological group, and
suppose G is sequentially complete. Then G is complete.
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Proof. Suppose G is a first countable Hausdorff topological group in which each
left Cauchy sequence converges. Suppose (x,) is a left Cauchy net defined on a
directed set D. Choose any neighborhood base at the identity e in G which is in
accord with Theorem 1.13: B, = {By, B,,...}, with B; = Bj_l ») B;2'+1 for
j = 1,2,.... Define «, recursively as follows. Choose o} = ai so that B8,y >
a1 = x5'x, € B. Given a,, choose &, so that B,y > ), = x5'x, € By,
and choose o, +1 so that a,4+1 > o, and o4 > a; 41+ Consider the sequence
Yn = Xa,. I m > n, then oy > &, > ), 50 x;' Xy, € B,. Thatis, y,'y, € By.
Also, yn_lym = (Y;ZIYV:)_I € Bn_l = B,.

Suppose U is open, with e € U. Choose N with By C U.If m,n > N, then
y,;lyn € Bmingmny C By C U. So: (y,) is a left Cauchy sequence, so y, — y for
some y € G since we are assuming that all left Cauchy sequences converge. The
claim is that x, — y.

Suppose U is open, and y € U. Choose N with yBy C U. Choose N’ so that
n >N = y, € yBy+1. Set ng = max(N’, N + 1), and suppose B > a,.
Then x;ﬂixﬁ € By, C Byyi,since B > ay, > . Thatis, y, 'xg € Byyi.
But also, y,, € yBn+1 since np > N'. Hence y_lyno € By41. Hence y_lx,g =
Y Vo - Vui'xp € By, C By.soxg € yBy C U.Inanutshell,

B>a, = xgel.

That is convergence. O

Theorem 1.34 illustrates why the use of sequences is sufficient; it does not
explain why it matters. Sequences allow parametrization by N, the natural numbers,
and N is not just directed, it is well-ordered. This allows definition by recursion,
which has already occurred in Theorem 1.13. Furthermore, the recursive definitions
only require finite intermediate constructions. This kind of thing also occurs in
situations devoid of sequences; the proof that a regular Lindelof space is normal
is particularly blatant, cf. Kelley [20].

To proceed further, we need to fix some neighborhood base %, = {Bj,
B, .. } with Bj = Bj_l D) B]2‘+1- Observe that Bij-H cee Bj+n C Bj_l for
J = 2, by induction on n: The n = 1 case follows from B;+; = eBj 41 C B;2'+1 C
Bj,s0oBjBjy C BJZ» C B;_1, while the statement

Vj>2: Bij-H"'Bj-Hl C Bj_l
holds by induction on n. By the induction hypothesis:

BjBjyi-+ Bjtmtn = Bj(Bjy1---B(j+1+a) C BjB; C Bj.
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Now suppose we are given some x, € B, for all n. Set
n
Yn = X1X2+"Xp = l_[xj-
Jj=1

The order matters here! Note that if m > n, then

—1 —1,.—1 —1
yn ymzxn xn_l...xl X1X2 - Xp - Xm

= Xp+1'**Xm € Byy1Bnt2--- By C By,
Also,
Yo' Yn =y 'ym) "' € B! = By.
If U is open and e € U, then one can choose N with By C U.If n,m > N, then
Y Y1 € Buinnny C By C U.

That is, (y,) is a left Cauchy sequence, so if G is complete, then all such products
must converge. We need a name for all this. Call such an infinite product

l_[xj =“lim "x1x2--- Xy,
n—o0o

a “(B,)-compatible infinite product.”

Theorem 1.35. Suppose G is a first countable Hausdorff topological group. Sup-
pose B, = {By, Bz, ...} is a neighborhood base at the identity e in G for which
B; = Bj_l D B]2‘+1 for all G. Then G is complete if, and only if, every (B,)-
compatible infinite product is convergent.

Proof. The “only if” part is done. For the “if” part, suppose every (B, )-compatible
infinite product converges, and suppose (g,,) is a Cauchy sequence. For each n,
choose M, so that k,l > M, = gk_1 g1 € B,. Choose m, recursively so that
m, > M, and m,, > m,_,, with my = M;. Then m,+, > m, > M,, so x, =
g 8m,4, € By for all n. By assumption, the infinite product [ x, converges. Set
Vn = X1X2+-+X, — y. Then

Vi = G Ema&ma &y " G Gt = Gl Gyt

SO Y, = g,;}gmwrl — Y, giving g, ., — &m,y. Since the subsequence (g, )
converges to g, ¥, {(gm) converges by Corollary 1.33. Hence G is complete by
Theorem 1.34. O

Corollary 1.36. Suppose G is a first countable Hausdorff topological group, and
H is a closed subgroup. Then: If G is complete, then so are H and G/H.
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Proof. H is complete by Proposition 1.30. As for G/H, suppose %, =
{B1, B», B3, ...} is a neighborhood base at the identity e of G, with B; = Bj_1 )
sz.+1 for all j. Then {B;gH/H : B; € %.} is a (countable) neighborhood
base at gH € G/H by Theorem 1.23(f). In particular, G/H is first countable.
G/H is also Hausdorff by Theorem 1.23(g). Finally, (B; H/H) = (B]._IH/H) =
(BjH/H)™' > (B?+1H/H) = (Bj+1H/H)? by how inverses and products are
computed in G/H, so by Theorem 1.35, it suffices to show that any (B; H/H )-
compatible infinite product in G/H is convergent.

Suppose x;H € B;H/H, with x; € B;. Then [[x; converges, that is y, =
X1X2 X, — y.Butnow y,H = xiHx,H ---x, H — yH since the natural map
7w : G — G/H is continuous [Theorem 1.23(b)]. O

By the way, Hausdorff quotients of complete Hausdorff topological groups that
are not first countable need not be complete. An example of this is constructed in
Exercise 32 of Chap. 5.

A final note concerning first countable Hausdorff topological groups. All such
groups are metrizable, with a metric that is left invariant; see Hewitt and Ross [17,
p. 70, Theorem 8.3]. In any such group, a Cauchy sequence in the metric is left
Cauchy in the topological group (see Exercise 16). Consider this more evidence
that the “right” notion of completeness simply requires that all left Cauchy nets be
convergent.

Exercises

1. (Net practice) Suppose X is a topological space, and (x, : @ € D) is anetin X.
Show that any limit of (x,) is a cluster point of (x,).

2. Suppose X is a topological space, and (x, : @ € D) is a net in X. Suppose D’
is a directed set, and suppose ¢ : D’ — D defines a subnet (x, : o' € D’) of
(x¢ 1 € D).

(a) Show thatif limp x, = x, then limp’ X,y = X.
(b) Show that if y is a cluster point of (x,) : @' € D’), then y is a cluster point
of (x4 : ¢ € D).

3. Suppose X is a topological space, (x, : « € D) isanetin X, and y is a cluster
point of (x, : @ € D). This problem is concerned with constructing a subnet
of (xo : @ € D) that converges to y. Let %, denote a neighborhood base at
y, and set D’ = D x %,. Declare that (¢, B) > (f,B’) when o > f and
B C B’. Finally, given («, B) € D’, define ¢ : D’ — D as follows. Since y is
a cluster point of the original net, choose y = ¢(o, B) so that y > « (in D) and
X, € int(B).

Note: To show that this is a subnet converging to y, there are three things to
do: First, show that D’ is a directed set. Second, show that the map ¢ produces
a subnet; the fact that (o, B) > o in D will help here. Finally show that
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limp’ x4« ) = y. Here, use the fact that x5 € B. You should also see
why it is crucial that D be nonempty: Given an open set U C X with y € U, fix
By € &, with By C U, and any ap € D.1If (B, B) > (cp, Bo) ...

4. Examine the preceding three exercises, and prove the following: Given a net
(x¢ : @ € D) in a topological space X, a point y € X is a cluster point of
(xq : @ € D) if and only if x is a limit of a subnet of (x, : @ € D).

5. Suppose X is a topological space that is not compact. Suppose % is an open
cover of X that has no finite subcover. The point here is to use % to construct a
net in X which has no cluster points. The main obstruction is comprehensibility.
The directed set D is the collection of all finite subsets of %, partially ordered

by set inclusion. If « € D, say « = {U}, U,, ..., U,}, then o does not cover X;
choose any
n
Xo € X — | Ut.
k=1

Show thatif p € X,and U € %, p € U, thena D {U} implies that x, & U.
Use this to show that p is not a cluster point of (x).

Now put it all together; prove the equivalence of the following three state-
ments, for any topological space X:

(1) X is compact.
(i) Every netin X has a cluster point.
(iii) Every netin X has a convergent subnet.

6. Suppose X is a set, and suppose for each x € X there is assigned a nonempty
family 2, of subsets of X, subject to:

(a) Forall B € %, : x € B.
(b) For all By, B, € A, there exists By € 4, with B3 C By N B,.

Set
T ={UCX:VxeU3IB e A, with BCU}.

Show that .7 is a topology. Show that the following are equivalent:

(i) Forall x € X, A, is a neighborhood base at x for the topology 7.
(ii) Forall A C X, int(A) = {x € A : there exists B € %, with B C A}.
(iii) For all x € X, for all B; € %, there exists B, € %, such that if y € By,
then there exists B3 € %, with B3 C B;.

Note and Hint: Condition (iii) is meant to convey that the elements y € B, will
wind up interior to Bj.
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7. Suppose X is a topological space. Show that the following are equivalent:

(i) Each point of X has a neighborhood base consisting of open connected sets.
(i) Each point of X has a neighborhood base consisting of connected sets.
(iii)) Components of open subsets of X are open.

8. (A general construction of non-Hausdorff [indeed, non-7}] spaces, useful for
counterexamples galore.) Suppose X and Y are two disjoint topological spaces.
(If they are not disjoint, replace one with a homeomorphic copy that is disjoint

from the other.) Define X .—1Y to be X UY, with the following “topology”: The
open subsets of X —~1Y are one of the following two types:

(a) Open subsets of Y, or
(b) All of Y, unioned with an open subset of X .

(The pictorial idea behind the notation is that X is ramped up over Y, where its
nonempty open subsets “leak” and fill up Y.)

(a) Show that this is a topology.

(b) Show that this topology is Tj if both X and Y are Tj.

(c) Show that this topology is never 7 if both X and Y are nonempty.

(d) Show that if K is compact and nonempty in X, and A C Y, then K U 4 is

compact in X —1Y.

9. Consider the topology constructed in Exercise 8, in conjunction with the three
conditions appearing in Proposition 1.6:

(1) Each point has a neighborhood base consisting of compact sets.
(i) Each point has an open neighborhood with compact closure.
(ii1) Each point has a compact neighborhood.

As noted in Sect. 1.1, (i) = (iii) < (ii) always.

(a) Set X = {+/2},Y = Q, usual topologies. Show that X 1Y satisfies (ii) and
(iii) but not (i).
(b) Set X = Z with the usual topology, and Y = (0, 1) with the cofinite topology.

Show that X 1Y satisfies (i) and (iii) but not (ii).

10. (Yet another counterexample.) Set X = Z with the cofinite topology, and ¥ =
(0, 1) with the discrete topology. set C, = {n,n+1,...}UY,sothat C; D C; D

--+. Show that, in X —~1Y (Exercise 8), each C, is compact and connected,
while NC,, is neither.

11. Suppose G is a topological group, and A, B C G. Set [A4, B] = {aba™'b™" :
a € A,be B}.Showthat [A~,B™] C [4, B]".

12. Suppose G is a topological group. Define the derived series as usual: G° = G,
and G"*! = subgroup generated by [G", G"].
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Define GI¥ = G, and GI"*! = closure of the subgroup generated by
[GI, G"]. (Think of this as the topologically derived series.) Show that
(G™)~ = G for all n. Hence show that G = {identity} for some n if,
and only if, G is solvable and Hausdorff.

13. Suppose G is a topological group, and H is a subgroup. Let # : G — G/H
denote the canonical map. Show that the quotient topology on G/H is the
unique topology .7 on G/H with the following property: If f : G/H — Y is
a function, where Y is a topological space, then f is an open map if, and only
if, f o is an open map.

14. Suppose G is a Hausdorff topological group that is also locally compact. Show
that G is complete.

Suggestion. Let C be a compact neighborhood of the identity e of G. If (x,)
is a left Cauchy net defined on a directed set D, choose ag so that 8,y > oy =
x,;lxy eC.

Now look at (x;olxy 1Y > ap), anet on a cofinal subset of D.

15. Suppose G is a Hausdorff topological group.

(a) Show that all centralizers of subsets are closed. In particular, the center is
closed.

(b) Show that the ascending central series [Z;(G) = center; Z,+1(G)
=pullback in G of the center of G/Z,(G)] consists of closed subgroups.
(So “Topologically nilpotent”= nilpotent.)

(c) Show that the normalizer of a closed subgroup is closed. Hint: There is a
subtlety here. If H is the subgroup, then A = {g € G : gHg™' C H} is

not the normalizer in general, but A N A~ is. Note that 4 = () {g € G :
heH

ghg™' e H}.

Remark: For part (a), it may be helpful (depending on your approach) to prove
the following. If X and Y are topological spaces, with Y Hausdorff, and f, g :
X — Y are two continuous functions, then the equalizer {x € X : f(x) =
g(x)}isclosed in X.

16. Suppose G is a topological group for which the topology comes from a left
invariant metric d: That is, d(xy, xz) = d(y,z) for all x, y,z € G. Show that
a sequence (x,) in G is left Cauchy in G as a topological group if, and only if,
(xn) is Cauchy under the metric d.

17. Suppose G is a commutative topological group, and suppose d is a metric on G
which is (left) invariant; that is, d(xy, xz) = d(y,z) for all x, y,z € G. Show
that, in the metric topology, G is a topological group. (It will help to show that
x > x~!is an isometry.)

18. Suppose G is a topological group, and suppose H and K are subgroups, with
H C K C G,sothat K/H C G/H. Show that K is closed in G if and only if
K/H isclosedin G/H.

19. Suppose G and H are two Hausdorff topological groups, and f : G — H is a
homomorphism.
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(a) Suppose f is continuous, and (x,) is a left Cauchy net in G. Show that
(f(xy)) is aleft Cauchy netin H.
(b) Suppose the graph of f,

I(f)=1{x.y) €eGxH:y= fx)}

is closed in G x H; and suppose H is a complete subgroup of H. Set G =
f~'(H), and suppose the restriction

fl:6G—>H
G

is continuous. Show that G is closed in G. (Consult Proposition A.2 in
Appendix A.)

20. Suppose G is a topological group, and H is a subgroup. Suppose int(H) is
nonempty. Show that H is both open and closed, and the quotient topology on
G/H is the discrete topology.



Chapter 2
Topological Vector Spaces

2.1 Generalities

A topological vector space X over R or C is a vector space, which is also a
topological space, in which the vector space operations are continuous. Letting F
denote the field R or C we require the maps

addition: X x X — X,
(x,y)—» x + y; and

scalar multiplication: F x X — X
(r,x) —rx

to be continuous. Note that scalar multiplication is jointly continuous and hence is
separately continuous. In particular, multiplication by —1 is continuous. This is just
“inversion” in the additive group, so every topological vector space is a topological
group. In particular, the theorems from Chap. 1 are all available for topological
vector spaces. Banach spaces, with the norm topology, are topological vector spaces.

NONEXAMPLES: (1) If V is an infinite-dimensional vector space over [F, and
Ay = all subspaces of finite codimension, then, as noted earlier, (¥, +) becomes
a topological group with %, as a neighborhood base at 0. It is not a topological
vector space, since scalar multiplication is not even separately continuous. (It is not
continuous in r.) (2) R2, with the “Washington metric,” where the distance between
x and y is ||x — y|| if x and y are colinear and is ||x| + ||| if not. (Roughly
speaking, the distance between x and y is the distance you must travel to get from
X to y when you are only allowed to move radially. It gets its name from the street
plan of Washington, D.C.) Scalar multiplication is continuous, but addition is not
even separately continuous in this metric.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 33
DOI 10.1007/978-3-319-02045-7__2, © Springer International Publishing Switzerland 2014
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It is evident that the definition really only requires [ to be a “topological field,”
and some things can be done in this context. However, convexity arises early, and
this will require X to be a vector space over R. This, in turn, will require our field F
to be an extension field of R. Since it will also be handy for FF to be locally compact,
transcendental extensions are out, and we are left with R or C. Since these give the
most useful examples, this is not a strong restriction. Nevertheless, there are some
cases (not discussed in this book) where authors look seriously at topological vector
spaces over p-adic fields, for example, Escassut [14] or Van Rooij [38].

The Hausdorff condition is not assumed here for topological vector spaces.
However, we shall soon restrict attention to locally convex Hausdorff topological
vector spaces; the Hausdorff condition will be required to make any real headway
exploiting the “locally convex” condition. Of course, the adverb “locally” in “locally
convex” means exactly what an adverb should, as described in Sect. 1.1.

A set A in a vector space over R is convex if:

Vx,ye A Vtel0,1]:tx+(1—1)y € A.

A topological vector space is locally convex if every point has a neighborhood base
consisting of convex sets. A locally convex topological vector space will be called
a locally convex space (abbreviated “LCS” or “l.c.s.” in the literature) for short.
Convexity is a major topic and is worthy of its own section.

The following example (actually a whole class of examples) follows a routine
similar to the one for norms. In many cases, these spaces will not be locally convex
and will eventually serve that role. For now, they are simply examples of topological
vector spaces constructed using a metric. A general neighborhood-base construction
for locally convex spaces will be provided later, in Sect. 3.1.

Example 3. LP-spaces, 0 < p < 1. Let (X, %, 1) denote a measure space and, as
usual, declare two measurable functions to be equivalent when they are equal a.e.
Letting [ f] denote the function class of f, set

170 = {171 1 Pdi < o] ang
p(Uf) = [ 111 dp.
The straightforward inequality (s + ¢)? < s” + ¢? when s,t > O:
s+t t
s+ —sf = / pxPldx = / p(x + )P dx
s 0

t
< / px”_ldx =17,
0

yields both the fact that L” () is a vector space as well as the inequality p([ /] +

[g]) = p([Lf] + p([g]); we also get that p([f]) = 0 < [f] = [0] and p(c[f]) =
le|?p([f]). When p = 1, these are the conditions defining a norm, and whether
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p = lor p € (0,1), they suffice to manufacture a topological vector space using

the metric d([ /], [g]) = p([f]— [g]). Given [f], [¢], and [A],

d([f].1gD) = p([f]1=[h]) = p(Lf] = [g] + [g] =[]
< p([f1—-1[gD + p(lg] = D)
=d([f].[gD) + d((g]. [n]):

d([gl. /D = p(gl = /D = p(=1(f1 - [g])
=[=1"p(lf1— (gD = d(f].[gD.

so d is a metric, while

d(lf1+ [gl. U1+ [hD = p(Lf]1+ [g] = [f1 = 11D
= p(lg] = [A]) = d([g]. [h]).
so d is translation invariant. By Exercise 17 in Chap.1, L?([u]) is at least a

topological group with this metric, while joint continuity of scalar multiplication
is easily checked using sequences: If ¢, — ¢ and [ f,] — [f], then

p(enlful = el f1+ cal f1=clfD
plealfa] = enl D) + plealf1=cLf]D
plea([fu] = [FD) + p((cn = fD
leal?d(Lful. LFD + lew — cl”p(Lf D
— [¢|”-040-p([f]) = 0.

p(enlful = clfD

| V.

Topological vector spaces can arise from metrics, as these spaces (and normed
spaces as well) do. They can arise in much more complicated ways as well. We close
this section with the standard constructions borrowed from the underlying algebra.

Theorem 2.1. Suppose (X;,i € &) is a family of topological vector spaces. Then
with the product topology, || X; is a topological vector space.

Proof. [] X, is a topological group by Corollary 1.20; the only issue is the joint
continuity of scalar multiplication. Letting F denote the base field, note that the
“diagonal” map

F — HF
icy

is continuous, since each component function is the identity function
(Theorem 1.18). Hence the maps
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Fx[]X — (]‘[F)x(]‘[m)

ied ied ied
~ [[Exx) -] x
i€y ied

are continuous: The intermediate isomorphism is from Corollary 1.19, and the last
arrow is continuous because its coordinate functions are

It.
Tjy - l_[(FXXi)_)FXXjO&)XjOa

ies
which are continuous. O

Theorem 2.2. Suppose X is a topological vector space, and Y is a vector subspace.
Then with the induced topology, Y is a topological vector space. Also, with the
quotient topology, X /Y is a topological vector space that is Hausdor(f if, and only
if, Y is closed.

Proof. Again, the only issue is scalar multiplication: Y is a topological group
by Corollary 1.22, while X/Y is a topological group by Theorem 1.23(h);
Theorem 1.23(g) addresses the Hausdorff condition. Letting [F denote the base
field,

FXY%FXX&IL)X

is continuous, that is the full composite

]FxYﬂ)Y%X

is continuous. Hence multiplication: F x ¥ — Y is continuous by Proposition 1.21.
As for quotients, a similar gimmick works.

Fx(X/Y)~FxX)/(0xY) [Thm. 1.23(i)]
and
It. 10j.
Fxx 4, x Prey X /Y is continuous, that is
proj.
FxX FxX)/(0xY)
A
mult.

Fx(X/Y)—X/Y
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is continuous as a composite function, so multiplication: F x (X/Y) — X/Y is
continuous by Theorem 1.23(c). O

Proposition 2.3. Suppose X is a topological vector space over F, and
Ui,...,V, € X. Define T : " — X by T(ci,...,cu) = Xcjv;. Then T is
continuous.

Proof. In fact,

n . n
mult. in sum
F'x X" ~ | |(Fx X) X X
il:[1 each factor 11:11

is jointly continuous on F” x X", hence is separately continuous. Its continuity on
F" at (vq,...,v,) € X" gives our conclusion. O

2.2 Special Subsets

When working with topological groups, some things become simpler when a
neighborhood base at the identity consists of “symmetric” sets, that is sets for which
B = B~!. Here, that would read “B = —B,” but it is not enough.

Definition 2.4. Suppose X is a vector space over R or C. A subset B C X is
balanced if V x € B, V ¢ in the base field with |¢| < 1, we have cx € B.

When the base field is R, this just says that the line segment between x and —x
is in B, which implies our mental concept of “balanced.” When the base field is
C, it says a good deal more, and many authors use the word “circled” in place of
“balanced.” Note that if B # @, then 0 € B by taking ¢ = 0.

Proposition 2.5. Suppose X is a topological vector space.

(a) If B is balanced, then so is B™.

(b) The intersection of any family of balanced sets is balanced.

(c) If B is balanced, and 0 € int(B), then int(B) is balanced.

(d) Every neighborhood of O contains a balanced neighborhood of 0. In fact,

(e) X has aneighborhood base at 0 consisting of balanced sets, which can be taken
to be all open, or all closed.

Proof. (a) If 0 < |c| < 1,and x € B7, take a net (x,), X, € B, with x, — x.
Multiplication by c is continuous, so ¢x, — cx. Since cx, € B,cx € B™.

(b) If B, are balanced, and x € NB,, and |c| < 1,thenVa : x € B, = c¢x € By,
socx € B, forall o.

(¢) If 0 < |c| < 1, then multiplication by ¢ is a homeomorphism which maps B
into itself, so ¢ -int(B) is an open subset of cB C B. Hence, if x € int(B), then
cx € ¢ -int(B) C B, so cx is interior to B. On the other hand, if ¢ = 0, then
cx = 0 € int(B) by assumption.
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(d) Suppose V is a neighborhood of 0. Since scalar multiplication is jointly
continuous, 3 an open neighborhood W of 0 and a § > 0 such that |c| < §
andx € W = cx € V. Set

B:UcW.

0<|c|<§

Note that B C V, B is open, and 0 € B (since 0 € every cW).If x € B, and
0< || <1,thenx € ¢cW with |¢c]| < § = ¢'x € ¢/cW,and 0 < |c/c| < 8.
Hence 0 < |¢'| <1 = ¢’x € B. Finally, if x € B, then0-x =0 € B.

(e) Part (d) says that the balanced open sets form a neighborhood base at O.
Corollary 1.10 says that their closures also form a neighborhood base at 0, and
it consists of balanced sets by part (a). O

Note that a set may be balanced without having a balanced interior: Consider the
bowtie in R?:

This section is concerned primarily with two kinds of special subsets. Balanced
sets are one kind; the other kind are the bounded sets.

Definition 2.6. Suppose X is a topological vector space. A set B in X is bounded
if, for every neighborhood V' of 0, there is a scalar ¢ such that B C cV'.

Proposition 2.7. Suppose X is a topological vector space.

(a) If B is bounded, and V is a neighborhood of 0, then there is a real scalar ty > 0
such that B C cV whenever |c| > .

(b) If B is bounded, then so is B™.

(c) If B and C are bounded, then so are B U C and B + C.

(d) Compact sets are bounded.

(e) A set B is bounded if, and only if, whenever x, € B, and ¢, — 0 in the base
field, necessarily c,x, — 0in X.

Proof. (a) Choose a balanced neighborhood W of O such that W C V. Then B C
coW for some cy. Set ty = |co|. If |¢| > to, then |co/c| < 1,50 (co/c)W C W,
thatis coW C ¢cW.Hence B C coW C cW C cV.

(b) If V is aneighborhood of 0, choose a closed neighborhood W of O with W C V,
in accordance with Corollary 1.10. Choose ¢ such that B C ¢W. Then B~ C
cW C ¢V since cW is closed.

(¢) If B C cV when |c| > ty,and C C ¢V when |¢| > t;,then BUC C cV
when |c| > max(, ). As for B + C, given a neighborhood V' of 0, choose
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neighborhoods W, and W, of 0 for which W, + W, C V [condition (ii) in
Proposition 1.8]. Choose fy such that B C ¢W; when |c| > fy, and ¢; such that
C C cW, when |L| > 1. Sett, = max(to, ll). Then B C L, Wi, and C C 1, W5,
SO B+ C Ctr:W+6W,=6(W+ W) CtlV.

(d) Suppose K is compact, and V' is a neighborhood of 0. Choose a balanced open
neighborhood W of 0 for which W C V. Then Vx € K, (’%) x — 0 since
% — 0 in the base field, so (%) x € W for large enough n. Thatis, x € nW.

So:

Compactness says

N
K C UnW:NW, for some N

n=1

sincen < N = (n/N)W C W = nW C NW since W is balanced. Hence
KCNWCNYV.

(e) First, suppose B is bounded, x, € B, and ¢, — 0 in the base field. Let V' be
any neighborhood of 0, and suppose B C ¢V whenever |c| > fo. 3 N such that
n>N = |c]| < m Supposen > N.Ifc¢, = 0,thenc,x, =0 ¢€ V. If
cn # O,then || > 1o+ 1> 19,50x, € B Cc,'V = ¢yx, € V.Inall
cases, ¢, X, € V whenn > N.

Next, suppose B is not bounded. Then by part (a), 3 a neighborhood V' of 0
for which B ¢ any cV'. In particular, B ¢ nV. Choose x, € B —nV, and set
Cn =2 Xy €0V = Xy &V, 50 Cuxy A 0. ]

Several things are worth noting. First of all, in a normed space, “bounded” means
exactly what it always has: B C n times the open unit ball when ||x|| < n for
allx € B.

Next, the fact that boundedness can be characterized using sequences [part (e)]
is a good deal more important than it looks. Also, it is more-or-less obvious that
subsets of bounded sets are bounded, and that if B is bounded, then so is ¢B. (In
fact, if B is balanced, then so is ¢B.) Finally, there is a subtlety buried in the proof
of part (d) above: Singletons are compact, hence bounded, so if n € X and V is
neighborhood of 0, then there is a 7y for which x € ¢V whenever |c¢| > fy. This
property is called absorbent: A set B is absorbent if, for all x € X, there exists a
to > 0 such that x € ¢B whenever |c| > t;. This concept will be returned to later.

In a normed space, the open unit ball is open and bounded. This does not often
happen. If B is bounded, and x € intB, then B + (—x) is a bounded neighborhood
of 0 [Proposition 2.7(c)]. Consider:

Proposition 2.8. Suppose B is a bounded neighborhood of 0 in a topological
vector space X. Then {27"B : n = 1,2,...} is a neighborhood base at 0.
In particular, X is first countable.
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Proof. If V is a neighborhood of 0, then 3¢y, > 0 such that B C ¢V when |c| > t.
Choose n € Nwith 2" > fy. Then B C 2"V,s027™"B C V. O

In particular, “locally bounded” implies first countable. In fact, as we shall see
later, a Hausdorff locally convex space is locally bounded if, and only if, its topology
comes from a norm.

We close with an addendum to Proposition 2.3.

Proposition 2.9. Suppose F = R or C. Then the product topology on F" is the only
Hausdorff topological vector space topology on F".

Proof. Let .7, denote the product topology, and % some other topology making
F" into a Hausdorff topological vector space. Then by Proposition 2.3, (F", 7,) —
(F", J) is continuous, so Jy C 7,. Hence every % neighborhood of 0 is a .7,
neighborhood of 0. It suffices to show that a standard .7, neighborhood of 0, {v €
F" . |lv|| < r}, contains a % neighborhood of 0: Then, the .7 neighborhoods of
0 will form a base at 0 for .7, as well as %; since the topology is determined by a
base at 0 (Proposition 1.8), we will get that .7, = J.

Consider K = {v € F" : ||v|| = r}. K is compact in the .7, topology, hence is
compact in the , topology (since Jy C 7,), hence is closed in the % topology
(since it is Hausdorff). Since 0 ¢ K, 3 a balanced % neighborhood V' of 0 with
VCcF'—K.If x € Vand ||x| > r, then (r/|x])x € V since V is balanced,
giving (r/||x|)v € V N K, a contradiction. Hence x € V = |x|| < r, thatis
Vc{veF :|v|| <r}. O

Corollary 2.10. In any Hausdorff topological vector space, finite-dimensional
subspaces are closed.

Proof. Tt follows from Proposition 2.9 that there is exactly one way to topologize a
finite-dimensional vector space over R or C and make it into a Hausdorff topological
vector space, since any topology can be transported to F” using a basis. (The map
is in Proposition 2.3). This topology is the norm topology, which is first countable
and sequentially complete, hence is complete (Theorem 1.34), hence is closed in
any larger Hausdorff space (Proposition 1.30). O

Corollary 2.11. A locally compact Hausdorff topological vector space is finite-
dimensional.

Proof. Suppose X is a locally compact Hausdorff topological vector space. Let V
be an open neighborhood of 0 for which V™ is compact (Proposition 1.6). Note that
V'~ is bounded, so V is bounded, so {27"V :n = 1,2,...} is a neighborhood base
at 0 (Proposition 2.8). Since V'~ is compact,

1
V- C U x + EV implies

xX€X

n
_ 1
V CJL_Jlxj—}—EV, some Xi,...,X; € X.
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Let Y denote the span of xj,...,x,; Y is finite-dimensional, hence is closed
(Corollary 2.10). But V. Cc V- C Y + %V. Hence, by induction on n, V. C
Y +27"V:

27"V C 27"Y + 27"V, so (induction hypothesis)
VCY+2"VCY 427"y 427 thy —y 4 p-0+Dy,

Hence

o0
V C ﬂ Y +27"V =Y~ =Y (Proposition 1.9).

n=1

But V is absorbent; if x € X, thenx € ¢V C c¢Y C Y for some scalar c. Hence
X=Y. O

2.3 Convexity

Convex subsets are special subsets, but convexity rates a section all its own. There
is a mythology that convexity only matters in functional analysis through local
convexity. This is not true at all. Convexity plays a role in some of the oddest places.

If X is a vector space over R (or C; any vector space over C is also a vector
space over R), and C C X, then C is convex when Vx,y € C, V¢t € [0,1],
tx + (1 —t)y € C. Several things are clear. First, observe that when checking if
x,y € C =tx(1—-t)y € Cfor0 <t <1, weneed only check for0 <t < 1,
since x and y are in C by assumption. Also, if C is convex, then so is x + aC
whenever x € X and a is a scalar (even a complex scalar when X is a vector space
over C). Finally, note that the intersection of any family of convex sets is convex, so
if A C X, then the intersection of all convex sets containing A will be the smallest
convex set containing A; this set is called the convex hull of A, written as con(A4).
It has an internal construction as well, reminiscent of the subspace spanned by a set
as either the intersection of all subspaces that contain it (external) or as the set of
linear combinations (internal).

Proposition 2.12. Suppose X is a vector space over R, and A C X. Then the
convex hull of A is the set of all “convex combinations,” or sums:

n n
Zt,-xi PX1y.., Xy € Asty, ... 1 €0, 1]’Zti =1.

i=1 i=1

In particular, if A is already convex, then all such sums lie in A.
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Proof. The closing “In particular” is actually the starting point. Assume 4 is convex
for a moment. Then all such sums must lie in A4, by induction on n: If n = 1, then
t; = 1 and t1x; = x; € A. For the induction step, assume #,...,%,+; € [0, 1],
X1,.-sXn+1 € A,and X't; = 1. If t,4; = 1, then all other ¢; = 0, so Xt;x; =
Xn+1 € A If 8,41 7é 1, then

n+1 n

t4
Ztixi =1 —-1t41) Z — X +lnt1Xn.

I =ty

i=1 i=1

in A (induction hypothesis)

Now to the general case. Since con(A) is convex, it must contain all convex
combinations from con(A), so it will contain all convex combinations from A4 since
A C con(A). It remains only to show that the set of all convex combinations is itself
convex.

Suppose Xi,...,X, € A; yi,....Yym € Aiti,....t, € [0,1],and t],.... 1), €
[0,1], with ¥t; = Xt/ = 1.If0 < s < I, then

s Zt,-xl +(1—5) Zt}y} = ZSlixi + Z(l — )}y,

i=1 j=l1 i=1 j=1

is itself a convex combination of length n + m, since

Xn:st,- +§:(1—s)t} =s2n:ti +(1—s)§:t} =s+(1—-s5)=1.

i=1 j=1 i=1 j=1 -

In general, convexity “plays well with others.” It interacts well with topological

considerations, even with nothing more than the basic topological vector space
assumptions.

Proposition 2.13. Suppose X is a topological vector space, and C is a convex
subset of X. Then C~ and int(C) are also convex.

Proof. C~ is convex: Suppose x € Candy € C7,and0 < ¢ < 1.Ifr =0
or 1, then tx + (1 —¢)y € C~ trivially, so assume 0 < ¢ < 1. In accordance with
Proposition 1.3(a), y is a limit of a net (y,) from C, and multiplication by (1—¢) is a
homeomorphism, so (1—¢)y, — (1—t)y. Hence tx+(1—t)y, — tx+(1—t)y since
tx + o is also a homeomorphism. But all tx + (1 —2)y, € C,sotx+(1—t)y € C~
again by Proposition 1.3(a).

Next, suppose x e C"andy € C7,and0 <7 < 1.Iff =0or 1 thentx + (1 —
t)y € C~ trivially, so assume 0 < ¢ < 1. In accordance with Proposition 1.3(a),
x is a limit of a net (x,) from C, and ---. As above, tx, + (1 —f)y € C~ and
txg +(1—=t)y >tx+ (1t —t)y,sotx +(1—-1)y e C™.
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Now for int(C). Suppose x € C and y € int(C).If 0 <t < 1, then
tx+(1—-t)yetx+ (1 —1int(C) C C,

so in particular, £x 4+ (1 —¢)y is an interior point of C. In particular, if x € int(C),
thentx + (1 —¢)y € int(C) evenwhent = 1,sincet =1 = tx+(1—-t)y = x €
int(C). O

The “0 < ¢t < 17 restriction in the proof is suggestive, and will play a rdle in
later constructions. The generality covering much of that is the following:

Proposition 2.14. Suppose X is a vector space over R, and suppose C and D are
two convex subsets of X, while I is a (possibly degenerate) subinterval of [0, 1].
Then

E={x+(1-t)y:xeC,yeD,tel}
Is convex.

Proof. Givent,t' € I;x,x’ € C;and y,y’ € D;suppose 0 < s < 1.If st + (1 —
s)t' =0,then0=¢=1¢ € I,and

stx+(1—=0)y)+ A —=5)t'x + A =1")y)
=sy+(1=5)y =0-x+1=0)(sy+(1—-5)y)€E.
Similarly, if s(1 —¢) + (1 —s)(1 —¢') =0,then 1l =t =¢' € I, and

six + (1 —0)y) + 1 =s)('x" + (1 —1)y")
=sx+(1=-s)x"=1-(sx+(1—-5)x)+0-y€E.
When st + (1 —s)’ >0and s(1 —¢) + (1 —s)(1 —¢') > 0:
s(tx + (1 =1)y) + (1 =s)('x" + (1 =1")y")

=stx + (1=)'x +s(1 =)y + (1 —s)(1=1")y’
st L=
=61+ 1=9)0)- (st =" T (+ ( —)s)t/xl)
+6A -0+ 1 -5 —=1"))-
s(=1) U=ni-)
(S(l—t)+(1—S)(1—t/)y sA=0D+1=90=1) )
(st + A=)+ A= (st + (A =5)0")y" € E
st A=9
PR GRS vV G s
" s(1-1) (-5 =-1) /
Ssi-n+a-sa-n' Tsa-ora-na-n’

since x” = e C,
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st + (1 —s)t’ € I since I is an interval, and
st+0 =)' +s0=-)+0 =)A=t =s¢+1-)+A =5t +1-1)
=1,sothat 1 —[st + (1 —s)'] = s(1 —1) + (1 —s)(1 = 1').

0

The preceding is not pretty, but the “slick” proof (based on considerations from
the next section) is just too slick, and looks like a scam (although it is not). See
Exercise 3 for a description of this approach.

There is one more result of major importance, which concerns the interaction
between “convex” and “balanced.” These two concepts play particularly well
together.

Theorem 2.15. Suppose X is a topological vector space, and suppose B is a
convex, balanced subset of X. Then the following are equivalent:

(i) int(B) # 0.
(ii) 0 € int(B).
(iii) int(B) = [0,1)B and B # 0.
Proof. Since B # @ = 0 € 0- B C B: (iii) = (ii); while (ii) = (i) trivially.

To show (i) = (iii), assume x € B, y € int(B),and 0 < ¢ < 1. Then —y € B since
B is balanced, so by Proposition 2.12:

tx =tx+(1—1) (%y + %(—y))

()
2

1—1¢
€tx + T(_y) + int(B) C B

and 1%’int(B) is open since 1%’ > 0. O
It is difficult to overemphasize the usefulness of this result: Solely given that
int(B) was nonempty, we have a formula for its interior which makes no reference
to the topology. Condition (ii) will play its own role later.
We close this section with a look back at the L”-spaces, 0 < p < 1. The failure
of local convexity here is usually developed using the Hahn—Banach theorem, but it
is, in fact, much more fundamental.

Proposition 2.16. Suppose i is Lebesgue measure on [0,1], and 0 < p < 1.
Suppose C is a convex subset of L? (). Then int(C) # @ = C = L?(p).

Proof. If [h] € int(C), then [0] € int(C) — [h] = int(C — [h]), the latter equality
holding since translation is a homeomorphism. Choose > 0 so that p([ f]) <r =
[f] € int(C — [h]), where as before,

1
p(LfD :/0 | fO1Pdu(@).
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Suppose [f] € L?(u). Set

F(x) = /0 O P du().

Then F is a nondecreasing continuous function on [0, 1], with F(1) = p([f]).
Choose an integer N such that N'=7 > p([f])/r,and0 = xo < x; <--- < xy = 1
so that F'(xx) = p([f]k/N (intermediate value theorem).

Set Iy = (xk—1,x¢] for 1 < k < N, and I} = [x¢, x;]. Note that ¥'X; = 1,
where X, is the characteristic function of /. But now

N

[F1= Y - V£ 7). and
k=1

p(NLf2]) = N” [ Cf@rde

Xk—1

X,

= NP(F(xi) = F(xy-1))
= N’p(LfD/N = p(LfD/N'"" <.

Hence N[f X] € C — [h] by the choice of r, so [ f] € C — [h] by Proposition 2.12.
Since [ ] was arbitrary, C — [h] = L?(u), so C = L?(u). O

2.4 Linear Transformations

This section will primarily wrap up some odds and ends concerning the effects of
linear transformations, and will close with a technical result to be used later.
When it comes to balanced, convex, or absorbent sets, the topology plays no role.

Proposition 2.17. Suppose X and Y are vector spaces over R or C, and suppose
T is a linear transformation from X to Y.

(a) If B is convex in X, then T(B) is convexinY.

(b) If B is balanced in X, then T (B) is balanced in Y.

(c) If C is convexin Y, then T~ (C) is convexin X.

(d) If C is balanced in Y, then T~'(C) is balanced in X.
(e) If C is absorbentin Y, then T~'(C) is absorbent in X.

Proof. The underlying ideas are pretty simple:

(@ fT(x), T(y) e T(B);x,y € B;and0 <t <1;thentT(x)+ (1 —-)T(y) =
Titx+ (1 —1t)y) eT(B).

) If T(x) e T(B),x € B,and |c| < 1,then cT(x) = T(cx) € T(B).

() Ifx,y e T7(C),and0 <t < 1, then T(tx + (1 —¢t)y) = tT(x) + (1 —
)T (y) € C,sotx + (1 —t)y € T7Y(C).
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(d) If x € T7'(C), and |c|] < 1, then T(cx) = ¢T(x) € C,s0cx € T~1(C).
(e) If x € X, and T'(x) € cC whenever |c| > t,then x € T~ (cC) = ¢T~(C)
whenever |c| > 1.
O

That was quick. The next result is even quicker.

Proposition 2.18. Suppose X and Y are topological vector spaces, and T is a
continuous linear transformation from X to Y. If B is a bounded subset of X, then
T (B) is a bounded subset of Y.

Proof. If V is a neighborhood of 0 in Y, then 7~!(V) is a neighborhood of 0 in X,
so B CcT~' (V)= T~!(cV) for some c, whence T(B) C cV. O

A linear transformation 7" from a topological vector space X to another topolog-
ical vector space Y will be called bounded if T (B) is bounded in Y whenever B is
bounded in X . Proposition 2.18 just says that continuous linear transformations are
bounded. The converse is not true in general, but the issue can and will be addressed
for locally convex spaces in Chap. 4.

The technical result really does not belong here, since there are no linear
transformations used—or are there? Actually, it is based on the fact that complex
scalar multiplication is a real-linear transformation. The technical condition at the
end is a preview of the verb “to absorb”: A set B absorbs a set A if there is a real
scalar 7o such that A C ¢ B whenever |c| > ty. This accords with earlier terminology:
An absorbent set is one that absorbs points. We will eventually need much more
latitude concerning which sets absorb what.

Proposition 2.19. Suppose X is a vector space over C, and suppose B is a
nonempty convex subset of X that is R-balanced, that is tB C B for —1 <t <1,
and suppose F is a family of subsets of X such that forall A C F: cA € F for
allc € C, and A C tB for somet € R. Then

C = ﬂ ¢'’B

0<6<2m

is convex and C-balanced, and ¥ A € F 3ty € Rwith A C ¢C when |c| > to.

Proof. Note that {0} =0- B C B,so0 € C. It is also immediate that C is convex
(since it is an intersection of convex sets).
C is balanced: If x € C, and |c| < 1, write ¢ = re'®, r > 0. Then for
0<6 <2m,
xee® B = @y c B
=re®xecB (B is R-balanced)

= ce¥x e B=cxeeB.
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The real question is why C absorbs members of .% . The underlying trick involves
the convexity. First, note that the convex hull of 2, —1 — i ﬁ, and =1 +i+/3in C
contains the unit disk:

—1+i/3

—1—i4/3

If A e #, A4 C {0},then A C ¢C for all ¢ € C, so suppose A € Z,
A ¢ {0}. Choose 11,1, and f3, so that 24 C 1B, (—1 + i~/3)A C B, and
(=1 —i+/3)A C 13B. Note that 11, 1, and #3 are nonzero since 0 - B = {0}, and we
are assuming that A ¢ {0}. Set ty = max(|t1], |t2], |t3]) > 0, and suppose |c| > fo.
Write ¢ = re'?; then r > 1, > 0. Fix any ¢, 0 < ¢ < 2m, and choose sy, 52, 53 > 0,
S1 + 52 + s3 = 1, so that

e 70T — 5.2 45y (=1 +iv3) 4 53+ (=1 —i/3).

Note that |; /ty] < 1fori =1,2,3;and 0 < to/r < I;s0|t;/r| < 1fori =1,2,3.
Thus, since B is R-balanced, for any x € A4:

2 n 2 .2
2xetlB:>t—xeB:>—-—xeB, thatis —x € B;

1 r o n r
—1+i3 Hh—14+i4/3
Cl4ivixenpo T3 p ool HiVE o
1) r 15}
that is ﬂx € B; and
—1—-i4/3 t3 —1 —i+3
(—1—i«/§)xez3B:>t—“/_xeB:>—3t—“/_xeB,
3 r 3

that is #gx € B. Thus, since B is convex,

2 —1+4+i3 —1—-i4/3 .
S1—X + 85 \/—x + 53 \/—x € B, thatis
r r r
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r(s1-2 482 (=1 +i+v/3) +53- (=1 —i+/3))x € B, thatis
rleTi 0+ ¢ B, thatis

xere®TPp = ¢.¢B.

Since ¢ was arbitrary, x € ¢C. Since x € A was arbitrary, A C cC. O

Exercises

1. Suppose X is a vector space over C which is a topological vector space over R.
Show that X is a topological vector space over C if multiplication by i is
continuous.

2. Suppose X is a topological vector space, and B C X. Show that B is bounded
provided that every countable subset of B is bounded.

3. Suppose X is a vector space over R, and C and D are two convex subsets of
X, while 7 is a subinterval of [0, 1]. Suppose x,x" € C and y,y’ € D. Let
Li={x+0-0x":0<t<l1}and L, ={ty+ (1 —1)y :0<1t <1}
Show that

Eo={tx"+0—-1)y":x" €Ly’ €Lt el}
is equal to x + T'(E}), where T : R* — X is a linear transformation defined by
T((1,0,0)) = x —x
T({0,1,0))=y—x
T(0,1,1) =y —x

and E; is the (obviously convex) intersection of the tetrahedron with corners
(0,0,0), (1,0,0), (0,1,0), and (0, 1, 1) with the slab {(x, y,2) e R3: y e I }:

Use this to give an alternate proof of Proposition 2.14.
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4. Suppose B is a convex subset of a topological vector space X, and suppose 0 €
B,int(B) # @,and Yx € X3Je > 0 with —ex € B. Show that int(B) =
[0, 1) B. Hint: Mimic the proof of Theorem 2.15. You do not have “—y € B,” but
you do have some € - (—y) € B.

5. Show that L?(w) is complete when 0 < p < 1. (Use Theorem 1.35 and
Exercise 16 from Chap. 1. Note that

n p n 00
( > |fk(r)|) <Y 1AOF 2D @)
k=1 k=1

k=1

6. Suppose Y is a closed subspace of L?”(u), where p = Lebesgue measure on
[0,1] and 0 < p < 1, and suppose L?(w)/Y is finite-dimensional. Show that
Y = L?(u). Hint: If not, apply Proposition 2.9 to produce an open convex subset
violating Proposition 2.16.

7. Suppose X is a topological vector space, and Y is a subspace. Show that
Y™ is a subspace. (This is almost too easy: You already know that Y~ is an
additive subgroup [Proposition 1.24], while multiplication by nonzero scalars
are homeomorphisms.)



Chapter 3
Locally Convex Spaces

3.1 Bases

Once again, a topological vector space will be called a locally convex space if it is
locally convex, that is, if each point has a neighborhood base consisting of convex
sets. The Hausdorff condition will also need to be imposed to make use of this
(in fact, Schaefer [33] imposes that condition on locally convex spaces without
imposing it on topological vector spaces), but there is some value in allowing
intermediate considerations of locally convex spaces that are not Hausdorff.

The reader is assumed to be familiar with Banach spaces. Here is an example
manufactured from standard Banach spaces which is not itself a normed space.

Example 4. Let m denote the Lebesgue measure on [0, 1]. Recall that if p < ¢,
then L?(m) D L9(m) in this case, with || f||, < || fll4 for f € L%(m): writing
1 =1/(q/p)+ 1/r,and noting that | f|? € L?/?(m), Holder’s inequality says that

1
1715 =/0 LA tdm < [ f1"llq/p - I

1 r/q
=(/0 (Ifl")‘”"dm) — 111

X = ﬂ L?(m), and

p=1

Bo={f1eX |flp<r}:0<r<oo,1<p<oo}.

Set

A, is abase at 0 for a topology on X that is not a norm topology but is manufactured
using norms. By the way, while L°°(m) C X, these spaces are not the same, since
[In(x)] € X, but In(x) is not essentially bounded.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 51
DOI 10.1007/978-3-319-02045-7__3, © Springer International Publishing Switzerland 2014
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The preceding example will reappear in Sect. 3.7. In fact, there is nothing wrong
about looking ahead at Sects. 3.7 and 3.8 (after a peek at Theorem 3.2 below). After
all, this is not a mystery novel.

A neighborhood base at 0 can be “translated” to any point, so, as usual, we
concentrate on a base at 0. We will want the “balanced” condition, so our first result
is aimed at guaranteeing that we are not working in a vacuum.

Proposition 3.1. Suppose X is a locally convex space. Then X has a neighborhood
base at 0 consisting of convex, balanced sets that can all be taken to be open or all
closed.

Proof. Suppose U is open and 0 € U. There is a convex set C with 0 € int(C) and
C C U, since X is locally convex. There is a balanced, open set W with 0 € W C
int(C) by Proposition 2.5(e). Let V' denote the convex hull of W. Then V' C int(C),
since int(C) is convex (Proposition 2.13). V is also convex (it is a convex hull),
and 0 € int(V), since 0 € W C V and W is open. It remains to show that V
is balanced; it will then follow that int(V) is convex (Proposition 2.13), balanced
[Proposition 2.5(c)], and 0 € int(V) C C C U. From this, it will follow that
(by letting U float) the set of all open, convex, balanced sets containing O forms
a neighborhood base at 0. To get a neighborhood base at 0 consisting of closed,
convex, balanced sets, just take closures [Corollary 1.10, plus Propositions 2.13 and
2.5(a)].

V is balanced: suppose y € V and |c| < 1. Choose xi,...,x, € W with
y = Xtixi,t; > 0,Xt; = 1. Then cy = Xticx; € con(W) = V, since each
cx; € W (W is balanced). ]

Next, we want to specify when we have a neighborhood base at 0. Actually, while
an exhaustive set of conditions can be given, the following will suffice for every (yes,
every) construction of a locally convex space in this book that is not already covered
(e.g., subspaces, quotients, and products). For terminology, recall that a subset B of
a vector space X over R or C is absorbent if, for all x € X, there exists fyp > 0 such
that x € ¢B whenever |c| > 1.

Theorem 3.2. Suppose X is a vector space over R or C, and suppose B is a
nonempty family of convex, balanced, absorbent sets satisfying the following two
conditions:

() If B € By, then 1B € %,
(,3) If B\, By € %, then 3 By C %y with B; C By N By.

Then %, is a base at 0 for a (unique) topology on X, making X into a locally convex
space. This space is Hausdor{f if, and only if, (| %o = {0}.

Proof. First note that we do get a topological group via Proposition 1.8: running
through conditions (i)—(iv) there:

(i)v" —B = B when B € %, (balanced condition);
@)V %B + %B C B when B € %4, (B is convex);
>iii)v" (X, +) is commutative;

(iv)v" This is condition (B).
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Also, via Corollary 1.11, the last sentence in this theorem is validated, so it only

remains to show that scalar multiplication is jointly continuous.

Let [F denote the base field, and suppose xo € X, ¢p € F, and coxo = yo € U,
with U open. Choose B C %, with yo + B C U, and choose n € N so that
2" > |co|. Now 2B € B, fork = 1,2,..., by an easy induction on k. Also,
there is a fp > 0 such that xo € ¢B when |c| > t since B is absorbent. Choose

m € N so that 2™ > ¢,. Then xo € 2" B, s0 27" x, € B.

Choose € > 0 so that ¢ —cg| < € = |c|] < 2", and € < 27!, Suppose

|c —co| <€,and x € xo +27""'B. Then x — xo € 27""! B, so:

c 1 1
—x))€c2"'B=_—.-BC =B
c(x —xp) € c TR C 7

<

since |55

< 1and %B is balanced; and

1
(c —co)xo = (2" (c — o)) - 3 -27"x

€ (2" (c - cp)) - lB C lB

since |21 (¢ — ¢o)| < 1 and 1B is balanced.
Hence:

CX — Y9 = CX — CoXg = CX — CXgp + CXo — CoXo
1 1
= c¢(x —xp) + (¢ —co)xo € EB + EB CB

since B is convex.
Thus cx € yo+ B C U, so

{c:|c—co| <€} x (xo + int(2_”_lB))

is a neighborhood of (cg, x¢) in F x X that scalar multiplication maps into U'.

3.2 Gauges and Seminorms

It is clear that convexity is primarily a geometric condition. To make analytic use
of convexity, this geometry must somehow be translated into some kind of analytic,
that is, functional, property. The context for this does not start with just any convex

set, but it does make strong use of convexity itself.
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Start with a vector space X over R and a convex set C, with 0 € C.If x € X,
define ¢, : R — X by ¢(f) = tx; then ¢ !(C) is a convex subset of R
[Proposition 2.17(c)]. That is, ¢ !(C) is an interval, and 0 € ¢! (C) since 0 € C.
The assumption we make is that, for all x € X, the interval ¢ '(C) has 0 as
an interior point, that is, some (—€,€) C ¢ '(C). In particular, (¢/2)x € C,
so x € (2/€)C. This assumption is sometimes referred to by saying that 0 is an
“internal point” of C, a terminology we use here, for a while at least. Note that 0
is an internal point of C if and only if C is absorbent (Proposition 2.19 applied to
C N (=C) and .% = all singletons, when the base field is C). Also, note that if
X is a topological vector space, and 0 € int(C), then 0 is an internal point since
@; 1(int(C)) actually is an open interval.

The geometric/analytic crossover is incorporated in the following proposition.

Proposition 3.3. Suppose X is a vector space over R, and C is a convex subset of
X with0 € C. Then:

(a) If0 <s < t, thensC C tC.

(b) If s >0andt > 0, thensC +tC = (s +1)C.

(c) If O is actually an internal point of C, then I, = {t > 0 : x € tC}isa
semi-infinite interval of the form [a, o0] or (a, o), forall x € X.

Proof. (a) If x € C, then
sx:t-(ix—k(l—f)'o)etc.
t t

(b) Ifx e C,then (s +t)x = sx +tx € sC +1tC,s0 (s +1)C C sC +tC.If
x € Cand y € C, then

N t
sx+ty=(s+t)(mx+my)e(s+t)C.

(c) Since 0 is an internal point of C, I, is nonempty by the earlier discussion
that put 2/€ in I,. But now [/, becomes a Dedekind cut by part (a), since
t>sel,=>xesCCtC=tel,. O

Corollary 3.4. Suppose X is a vector space over R, and C is a convex subset
of X with 0 € C. Suppose 0 is an internal point of C. Then, in the notation of
Proposition 3.3:

(a) If x € X, and s > 0, then I, = sl.
(b) Ifx,y € X, then Iy, DI, +1I,.

Proof. (a) tel, & xetC & sx estC & st € ly,.
(b) Ifse I,andt € [,,thenx e sCandy € tC,sox+y € sC+tC = (s+1)C,
SOS +1 € Iity. |
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Now suppose, as above, that X is a real vector space, and C is a convex subset of
X with 0 € C; suppose 0 is an internal point of C. The left endpoint of the interval
I, [the a in Proposition 3.3(c)] will be denoted by pc¢ (x). Corollary 3.4(a) says that
pc(sx) = spc(x) when s > 0. Also, pc(0) = 0, since Iy = (0, 00), so pc(sx) =
spc(x) for s > 0. Also, Corollary 3.4(b) says that pc(x + y) < pc(x) + pc(»),
since I, + I, is a semi-infinite interval with the left endpoint pc (x) + pc(y). That
is, pc 1s a gauge.

Definition 3.5. Suppose X is a vector space over R or C. A gauge is a function
p : X — R satisfying the following two conditions:

(i) p(tx) =tp(x)forallt > Oandall x € X.
) px+y) < px)+ p(y)foralx,y € X.

A gauge p is called a seminorm if p is nonnegative and p(cx) = |c|p(x) for all
x € X and c in the base field. A seminorm p is a normif p(x) =0 = x = 0.

Note that a gauge need not be nonnegative, although our functions pc are. See
Exercise 1 for a nice example.

Going back to our convex set C having 0 as an internal point, the function p¢
has three names in the literature: the Minkowski gauge, the Minkowski functional,
and the support function of C. We will use “Minkowski functional.”

Since our space will be topological, one point needs to be made immediately.

Proposition 3.6. Suppose X is a topological vector space over R, and p : X — R
is a gauge. The following are equivalent:

(i) p is continuous.
(ii) p is continuous at 0.
(iii) 0isinteriorto{x € X : p(x) < 1}.

Proof. (1) = (ii) is trivial, and (ii) = (iii) is as well, since the real number 0 is
interior to (—oo, 1].
(iii)) = (i): Given any xo,x € X:
p(x) = p(x —x0 + x0) < p(x —x0) + p(xp), and
p(x0) = p(xo —x + x) < p(xo — x) + p(x), so
— p(xo —x) < p(x) — p(xo) < p(x —xo).

Set V =int{y € X : p(y) < 1}. If x € xo + e(V N (=V)), thatis, x — xy €
e(VN(=V)),then x —xg € €V, thatis, x —xg = €y, with y € V,s0 p(x — x¢) =
pley) = ep(y) < e, while x—xy € e(=V), thatis, xo—x € €V, thatis, xo—x = €z
withz € V, 50 p(xo—x) = p(ez) = €p(z) < €. Thatis, forx € xo+€(V N (=V)):
—€ = —p(xo— x) = p(x) — p(xo) = p(xo—x) <€, or|p(x) — p(xo)| < e.
Since (V' N (—V)) is a neighborhood of 0, we are done. O

Why <1? The following settles that and puts the whole business together.
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Theorem 3.7. Suppose X is a vector space over R or C, and C is a convex subset
of X with 0 € C. Suppose 0 is an internal point of C. Then the Minkowski functional
pc is a gauge, and

{(xeX: pcx)<l}cCCf{xeX:pc(x) <1}

Also, pc is a seminorm if C is balanced. Finally, if X is a topological vector space,
then 0 € int(C) if, and only if, pc is continuous.

Proof. The fact that p¢ is a gauge was established earlier. As for the containments:

pcx)<l=1€el, = pc(x) <1
¢

xeC

Continuity of pc = {x € X : pc(x) < 1} is open, making O interior to C
since {x € X : pc(x) < 1} C C.If0 € int(C), then O is interior to {x € X :
pc(x) < 1}since C C {x € X : pc(x) < 1}: this forces p¢ to be continuous by
Proposition 3.6.

There remains the seminorm condition when C is balanced, so assume C is
balanced. If |s| = 1, then sC C C,and s™'C C C,s0C = s7'(sC) C s”!C.
Thatis, C = s~ 'C.Butifx € X,thenx € tC < x €ts7'C < sx € tC. Thatis,
I, = ;. Hence pc(sx) = pc(x) when |s| = 1. If ¢ is in the base field, choose s
with |s| = 1 so that ¢ = s|c|. Then pc(cx) = pe(s|clx) = pe(lc]x) = |c|pc(x)
since pc is a gauge. O

Note: C = [—1, 1) is not balanced in R, but its Minkowski gauge is pc (x) = |x]|,
which is a (semi)norm.

Locally convex spaces are often defined using seminorms. In fact, this can be
efficiently done using Theorem 3.2. Let X be a vector space over R or C, and
suppose .7 is a family of seminorms on X. One can take the following sets:

B=(|xeX:pjx)<2™}
j=1

with n € Nand py,..., p, € F; the collection of all such B’s forms a base for
a locally convex topology. In fact, Reed and Simon [29] actually define the term
“locally convex space” in this way. This is not overly restrictive, since one can start
with a base for the topology at 0 consisting of convex, balanced sets; take their
Minkowski functionals; and apply this construction. However, it is somewhat more
natural in many situations not to use seminorms. We shall return to this in Sect. 3.7,
where the seminorm — locally convex space construction will only arise directly
when the family of seminorms is countable. This situation does happen frequently.
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Our next topic is the Hahn—Banach theorem, which deserves its own section. It
concerns the extension of a linear functional bounded by a gauge. (Recall that a
linear functional on a vector space is a linear transformation from the space to its
base field.) When that gauge is a Minkowski functional, the following result is quite
useful.

Proposition 3.8. Suppose X is a vector space over R, and C is a convex subset
of X with 0 € C. Suppose 0 is an internal point of C, and pc is the associated
Minkowski functional. Finally, suppose f : X — R is a linear functional. Then
f(x) < pc(x) forall x € X if, and only if, f(y) < 1forall y € C.

Proof. In the notation of Proposition 3.3, pc(x) is the left endpoint of the semi-
infinite interval I, so p¢(x) is the greatest lower bound for /. This is exactly what
we need.

First, suppose f(x) < pc(x) forallx € X.Ify € C,theny €1-C,sol €/,
and pc(y) < 1since pc(y) is a lower bound for /,,. Thus 1 > pc(y) > f(»).

Next, suppose f(y) < 1 whenever y € C.Fix x € X, and suppose ¢ € .. Then
t > 0 by definition of I,. Also, x € ¢C, so that t~'x € C and (setting y = t_lx)
f(t7'x) < 1.Butnow 1 > f(t7'x) =t f(x),sot > f(x). This all shows that
f(x) is a lower bound for I, so f(x) < pc(x) since pc(x) is the greatest lower
bound for /,. O

3.3 The Hahn-Banach Theorem

The Hahn—Banach theorem is fundamental to functional analysis. In a sense, the
primary reason why locally convex spaces are so useful is that there are guaranteed
to be plenty of continuous linear functionals, and the Hahn-Banach theorem
provides them.

Theorem 3.9 (Hahn-Banach). Suppose X is a vector space over R, Y is a
subspace, and p : X — R is a gauge. Suppose f : Y — R is a linear
functional for which f(y) < p(y) forall y € Y. Then f extends to a linear
functional F : X — R for which F(x) < p(x) forall x € X. Finally, if X is a
topological vector space and p is continuous, then F is continuous.

Proof. We use Zorn’s lemma. Consider the set & of all ordered pairs (g, Z), where
Z is a subspace of X containing ¥, and g : Z — R is a linear functional that
extends f and for which g(z) < p(z) forall z € Z. Partially order & by extension:
(g.Z2) < (¢g’,Z')when Z C Z' and g/|Z =g. (f,Y) € &, s0 & is nonempty.
Zorn’s lemma will produce a maximal element (F, Yy) € & once we know that
every nonempty chain (i.e., totally ordered subset) in & is bounded.

Suppose ¥ is a nonempty chain in &. Set

Zy = U Z; go(x) = g(x) whenx € Z.
(g.2)e?
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The function g is well-defined, since % is a chain: if x € Z; and x € Z,, with
(g1.Z1), (g2, Z2) € €, then either (g1, Z1) < (g2, Z>») [in which case gz‘zl =g,
so x € Z; gives g1(x) = g2(x)], or (g2, Z2) < (g1, Z1) (ditto, reversed). Also,
Z, is a subspace, since % is a chain: if x,y € Zy, say x € Z;,y € Z,, with
(g1, Z1), (g2, Z2) € €, then either (g1, Z1) < (g2, Z>) (in which case x € Z; C
Z5,80 X +y € Z, C Zy), or (g2, Z3) < (g1, Z) (ditto, reversed). Also, if x €
Zoand r € R, say x € Z with (g,Z) € C,thenrx € Z C Zy. (This does
not use the chain property.) Next, if x € Zy, say x € Z with (g, Z) € %, then
go(x) = g(x) < p(x). Finally, Zy, D Y, and g0|Y = f, since & is nonempty:
choosing any (g, Z) € Z:Y C Z C Zp,andfory € Y, go(y) = g(») = f(»).
So (go, Zo) € &, and is, by construction, an upper bound for %. Since € was
arbitrary, & has a maximal element (F, Yj). It remains to show that Yy = X.

Suppose Yy # X. Choose any yy ¢ Yo, and set Z = Yy + Ryp. This sum is
direct. The claim is that F' can be extended to G, with (G, Z) € & and G |Y0 =F,
contradicting maximality. To do this, set

G(y +1tyo) = F(y) + cot

for a constant ¢ to be determined. This G certainly extends F to Z, and it remains
only to show that ¢y can be chosen so that G(x) < p(x) forallx = y + ty, € Z.
This holds by assumption (regardless of c¢y) when ¢ = 0. The final point is that the
conditions required when ¢ > 0 and when ¢ < 0 are compatible.

Suppose ¢t > 0. We need

F(y) +ct = G(y+tyo) = pOy+tyo)=1tpt™"'y + yo)
|
t(F(t™'y) + co) that is (setting y’ = t7'y)

c = p(y'+y) — F(@)foraly €Y.
Suppose ¢t < 0. We need
F(y) +cot =Gy +1ty) = p(y+1ty)=—tp((=1)""y = yo)
—t(F((=)7'y) = co) that is (setting y” = (—t)"'y)
—co = p(y" = yo) = F(y"), or
co>=—p(y" —y) + F(@") forall y” € Y.

But: given any y’, y” € Y,

FO+FO")=FQO' +y")<pOy'+y"
= p((Y' +y0) + " = y0) < p(¥' + y0) + p(Y" — yo)

thatis F(y") — p(3” — yo) < p(y' + y0) — F(¥").
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Set
co = inf p(y'+ yo) — F()").
V' €Yy

Any F(y") — p(y” — y0)(y” € Yp) is a lower bound for this set of values, so
co > F(y") — p(y" — yp) forall y” € Y since ¢y is the greatest lower bound for
these values. (In particular, ¢y > —00.)

Finally, co < p(y’' + yo) — F(y’) for all y’ € Y, since ¢ is the greatest lower
bound for these values.

There remains the question of continuity when X is a topological vector space.
Suppose X is a topological vector space, and p is continuous. Given € > 0, there
is an open neighborhood V' of 0 for which p(x) < € when x € V, since p(0) =
p(0-0) = 0- p(0) = 0 from the gauge condition. If x € X,and y —x € V N (=V),
thenx —yeVandy —x € V,so

F(x)—F(y)=F(x—y) = p(x—y) <eand
F(y)—F(x)=F(y —x) < p(y —x) <e, thatis
|F(x)— F(y)| <ewhenye€x+ (VN(=V)).

|

In the next section, this will be used to produce the topological dual for a
Hausdorff locally convex space. There are some preliminary matters, however,
concerning convex sets. Since our primary concern is with locally convex spaces
and continuous linear functionals, we start with that picture.

Lemma 3.10. Suppose X is a locally convex space, and suppose C is a closed,
convex set, with 0 € int(C). Suppose xo & C. Then there is a continuous linear
functional F : X — R for which F(C) C (—o0, 1] and F(x) > 1.

Proof. Let pc denote the Minkowski functional for C; pc¢ is a continuous gauge
by Theorem 3.7. Since pc(xo) < 1 = xo € C (Theorem 3.7): pc(xo) > 1.
If pc(x0) = 1, then pc ((1 —%)xo) = 1—% <1l= (1—%))&?0 eC,soxgeC
since C is closed and (1 — %) - 1= (1 — nl) Xo — Xo (scalar multiplication is
continuous). Hence pc(xo) > 1.

On Rxy, set f(txg) = tpc(xp). If t > 0, then f(tx0) = tpc(xo) = pc(txp).
Ift < 0, then f(tx0) = tpc(x0) < 0 < pc(txo). Hence f(y) < pc(y) for
y € Y = Rxy. The Hahn—-Banach theorem now extends f to a continuous linear
functional F : X — R for which F(x) < pc(x) for all x € X. In particular, if
x € C,then F(x) < pc(x) <1, while F(x9) = f(x0) = pc(xo) > 1. |

Corollary 3.11. Suppose X is a locally convex space, and suppose C is a closed,
convex set, with 0 € C. Suppose xo ¢ C. Then there is a continuous linear
functional F : X — R for which F(C) C (—o0, 1] and F(x) > 1.
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Proof. Let %, be a base for the topology at zero consisting of open, convex,
balanced sets. Since C is closed,

XgC=C"= [ C+W
WeR,

so xg & C + W for some W € %,. Set

1 1 1
C/=(C+§W) cC+§W+§WcC+W.

Then 0 € %W C C’,s00 € intC’. Also, C C C’. Finally, xo ¢ C’ since C' C
C + W. By Lemma 3.10, there is a continuous linear functional F : X — R for
which F(xp) > 1 and F(C) C F(C') C (—o0, 1]. ]

Proposition 3.12. Suppose X is a locally convex space, and C, and C, are two
disjoint nonempty convex sets, with C, closed and C, compact. Then there is a real
number ry and a continuous linear functional F : X — R for which F(x) < ry for
all x € Cy, and F(x) > ro forall x € C,.

Proof. Pick any yo € C; — (3, a closed (Corollary 1.15) convex (Proposition 2.14
appliedto C = 2Cy, D = —-2C;,and [ = [%, %]) set. Then 0 € (C; — Cy — o).
Also, xg = —yg & C1 — C, — yg since 0 & C; — C;, (since C; N C; = @). Choose
a continuous linear functional F : X — R for which F(x¢) > 1 and F(C, — C; —
¥o) C (—00, 1]. Note that if x € Cy and y € C;, then

1= F(x—y—yo) = F(x) = F(y) + F(=yo)
F(x)— F(y) + F(xo), thatis
F(x)— F(y), thatis

1 — F(xo)

v

FO) = 5(FGo) = 1) = 5 (Fxo) = 1)+ F().

Set (using compactness of C;)
. 1
ro = min F(y) — - (F(xo) — 1)
yeEC; 2

and observe that (with € = %(F(xo) —1)>0)all F(y) >ro+¢€(y € Cy) and all
F(x)<rp—e(x € C)). O

The preceding results give the main separation theorems for convex sets in locally
convex spaces. The dual space, the set of continuous linear functionals with values in
the base field, constitutes our next subject. Most of what is needed is a consequence
of what appears in this section, with one (surmountable) complication coming from
the possibility that our locally convex space is defined over the complex numbers.
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3.4 The Dual

As noted earlier, the primary reason for assuming that a topological vector space is
locally convex is to guarantee that there are enough continuous linear functionals
to say something intelligent about the space. In order to evenly separate points, the
space will also need to be Hausdorff, but there are a few cases where intermediate
constructions yield non-Hausdorff locally convex spaces.

Definition 3.13. Suppose X is a locally convex topological vector space over R
or C. Letting IF denote the base field, the Dual space of X, denoted by X *, is the
space of continuous linear functionals f : X — . The Algebraic Dual, denoted
by X', is the space of all linear functionals f : X — F, continuous or not.

Remarks. (1) The dual will be topologized (in more than one way!) in Sect. 3.6.

(2) The notation above for X * and X is fairly standard in books that use functional
analysis in other fields. Unfortunately, it is the opposite of the most common
usage in functional analysis textbooks. Be wary!

For locally convex spaces over R, we have what we need, and the results of
this section would only take a few more lines. For complex vector spaces, we must
contend with the fact that the only linear functionals directly produced by the Hahn—
Banach theorem are real-valued.

The following result makes the connection between real-linear functionals and
complex-linear functionals, and it is not the least bit “obvious.”

Proposition 3.14. Suppose X is a locally convex topological vector space over
C, and f : X — R is an R-linear functional. Then there is a unique C-linear
functional F : X — C for which f(x) = Re (F(x)) forall x € X. F is given by
the formula F(x) = f(x)—if(ix). If f is continuous, then so is F. Finally, if B is
a convex, balanced subset of X for which f(x) < 1 when x € B, then |F(x)| < 1
when x € B.

Proof. The formula starts things. First of all, if f(x) = Re (F(x)) with F being
C-linear, then f(ix) = Re (F(ix)) = Re (i F(x)) = —Im(F(x)), so our formula
is forced. Set F(x) = f(x) —if(ix). Then by inspection, F : X — C is an R-
linear transformation, since F(x) = f(x)-1— f(ix) - i, and (1) multiplication by
i on X is R-linear, and (2) 1 and i are “vectors” in C. With this definition, as well,
F is continuous when f is, and F(ix) = f(ix) —if(i’x) = f(ix) —if(-x) =
f(ix)+if(x),whileiF(x) =if(x)—i%f(ix) =if(x)+ f(ix) = F(ix). Finally,

F((a 4+ bi)x) = F(ax +ibx) = F(ax) + F(ibx)

=aF(x)+iF(bx) =aF(x)+ibF(x) = (a + bi)F(x),

so F is complex linear.
Now suppose B is a convex, balanced subset of X for which f(x) < 1 when
X € B.Given x € B,if F(x) = |F(x)|e'?, then e*%x € B since B is balanced,
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and

|F(x)| = e F(x) = F(e7'%x)
=Re(F(e X)) < 1.

|

Corollary 3.15. Suppose X is a locally convex topological vector space over R or
C, and suppose B is a nonempty closed, convex, balanced subset of X. If xo € B,
then3 F € X* for which |F(x)| < 1 when x € B, andRe F(xo) > 1. In particular,
IF(X0)| > 1.

Proof. Since B is not empty, {0} = 0- B C B, thatis 0 € B, so Corollary 3.11
applies to produce a continuous, R-linear functional f : X — R for which
f(x) < 1 when x € B, but f(xg) > 1. If the base field is C, then the
F € X* produced by Proposition 3.14 has the required properties by the last part of
Proposition 3.14. If the base field is R, simply note that f(B) is a balanced subset
of R [Proposition 2.17(b)] which is contained in (—o0, 1], so f(B) C [—1, 1]. That
is, | f(x)] < 1forall x € B. In other words, if the base field is R, we can directly
take F = f. O

In what follows, continuous linear functionals will usually be written in lower-
case, since the preceding provides the main transition from R to C. The next result
is an exception.

Proposition 3.16. Suppose X is a locally convex topological vector space, and Y
is a subspace. Then any f € Y* extends to some F € X*. That is, the restriction
map F +— F|Yfr0m X*to Y* is onto.

Proof. First case: Base field = R. {x € Y : f(x) < 1} is aneighborhood of 0 in Y,
and Y has the induced topology, so there is a convex, balanced neighborhood C of 0
in X suchthat C(Y C {x € Y : f(x) < 1}. Thus, letting p¢ denote the support
function of C, pc(x) > f(x) for all x € Y by Proposition 3.8. Now the Hahn—
Banach theorem extends f to F € X™*, with F(x) < pc(x) forall x € X. (F
is continuous by the last part of the Hahn—Banach theorem, since pc¢ is continuous
[Theorem 3.7].)

Second case: Base field = C. Use the preceding to continuously extend Re( f)
to X, and use Proposition 3.14 to complexify that extension. O

There is one last point to make before going on to the next section, in which
Corollary 3.15 will provide the starting point:

Corollary 3.17. Suppose X is a Hausdorff locally convex topological vector space
over R or C. Then X* separates points. That is, if x # y, then3 f € X™ for which

Jx) # f().

Proof. Choose any such f € Y*, Y = span{x, y}, and continuously extend it to X .
O
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3.5 Polars

Corollary 3.15 provides the basic result for discussing polars, which have a number
of uses. They will be used in the next section to topologize X *, for example.

Definition 3.18. Suppose X is a locally convex topological vector space over R
or C.If B C X, then the polar of B, denoted by B°, is the set

{feX":|f(x)|<1Vxe B}
If A C X*, then the polar of A in X, denoted by Ao, is the set
xeX: [f()| =1V feA}

Some (perhaps most) texts denote the polar of A C X* with the notation “A°.”
Since X* will eventually be topologized as a local convex space, our A° will be
in X**, the dual of X*, where it should be. The lower circle in A, is intended to
indicate that 4, is “down” in X. Again, be wary when reading the literature!

The next proposition describes the elementary properties that come directly from
the definition.

Proposition 3.19. Suppose X is a locally convex topological vector space over R
or C, and suppose A, B C X and D, E C X*. Then:

(al) A C (A°)o.
(a2) D C (Do)°.
(bl) AC B= A° D B°.
(b2) D C E = D, D E..
(cl) (AU B)° = (A°) N (B°).
(c2) (DU E)s = (Do) N (Es).
(dl) If ¢ # 0, then (cA)° = ¢~ 1(A°).
(d2) If ¢ # 0, then (cD)o = ¢~ (D).
(e) AC Do < A° D D.
(f) Do is closed, convex, balanced, and nonempty.

Proof. (al) and (a2) come directly from the definition. So do (b1) and (b2), since
stronger conditions yield smaller sets. For (c1),

(AUB)Y ={feX*:|f(x)] <1forx € AU B}
={feX*:|f(x)|<1forx € Aorx € B} = (A°) N (B°).
(c2) is similar. (d1) follows from the fact that

fe(A)® & VxeA(lcf(X)]=|flex) = 1)
Scfed® s fec (A
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(d2) is similar. (e) follows from that fact that
ACD, & VxeAY feD(f(x)|<1)< DcC A

Finally, (f) comes from the fact that

Do= (J{xeX:|f(x)| =<1}

feD

a closed, convex, balanced [Proposition 2.5(b)] set, with 0 € D,. O

Polars require some thought. They get smaller as the starting set gets larger, but
do so in a regular way. They take a bit of getting used to, but it is worth the effort.

To proceed, here is a general definition, to be used routinely in what follows.
Suppose X is a vector space over R or C, and suppose A, B C X, with B being
nonempty and balanced. We say B absorbs A if A C c¢B for some scalar c. If
|d| > |c|, then ¢ = db for |b| < 1 (thisis soevenifc =0),s0bB C B = ¢B =
dbB C dB.Hence A C ¢B = A C dB. Moral: |c| only has to be large enough.
(This is why this definition only works as is for B being balanced.)

Theorem 3.20 (Bipolar Theorem). Suppose X is a locally convex topological
vector space over R or C; A,B C X; and D C X*. Assume that B is closed,
convex, balanced, and nonempty. Then:

(a) (B°)o = B.

(b) (A°)o is the smallest closed, convex, balanced, nonempty set containing A.
(c) B absorbs A < B absorbs (A°)o.

(d) If A is bounded, then so is (A°)o.

(e) Do absorbs A < A° absorbs D.

(f) B absorbs A < A° absorbs B°.

(2) ((49)0)° = A° and ((Do)°)e = De.

Proof. (a) Follows directly from Corollary 3.15 and Proposition 3.19(al): B C
(B®)o, butif xo & B, then3 f € X* for which | f(x)| < 1 forall x € B but
| f(x0)| > 1. Hence this f belongs to B°, so that xy does not belong to (B°)..

(b) (A°), is closed, convex, balanced, and nonempty [Proposition 3.19(f)], so
suppose C is closed, convex, balanced, and nonempty, and A C C. Then
A° D C° [Proposition 3.19(b1)] and (A°)o C (C°). [Proposition 3.19(b2)].
But C = (C°), by part (a), so (4°). C C.

(c) If A C ¢B, then (since ¢ B is closed, convex, and balanced) (A°), C ¢B by part
(b). If (A°)o C ¢B, then A C ¢B since A C (A°), [Proposition 3.19(a2)].

(d) Suppose A is bounded. If U is a neighborhood of 0 in X, then there is a
closed, convex, balanced neighborhood V' of 0 with V' C U (Proposition 3.1).
Then A C cV for some scalar c. Hence A° D (c¢V)° [Proposition 3.19(b1)]
and (4°)o C ((cV)?)o [Proposition 3.19(b2)]. But ¢V is closed, convex, and
balanced, so ((cV)°)o = ¢V by part (a). Hence (4°), C ¢V C cU.
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(e) A° is convex and balanced. If ¢ # 0:

c(Do) DA (c'D)sD A (Proposition 3.19(d2))
sc'DcA (Proposition 3.19(e))
& D Cce(A°) (Multiplication by c is bijective.)

(f) By part (e) (with D = B°), (B°), absorbs A < A° absorbs B°. But B =
(B°)o by part (a).

(g) A C (A°)o by Proposition 3.19(al), so by Proposition 3.19(b1), with B =
(A°)s, we get A° D ((A°)o)°. But A° C ((A°)o)° by Proposition 3.19(a2)
(with D = A°). The fact that ((Do)°)o = D, is similar: D C (D,)° by
Proposition 3.19(a2), so Do D ((Ds)°)o by Proposition 3.19(b2). But D, C
((D+)°)o by Proposition 3.19(al) (with A = D,). O

One thing is worth contemplating. Part (a) is the crucial point; all else follows
fairly directly, even though the style of argument is a bit unusual. Proposition 3.1
connects with our assumptions as well. Finally, part (a) itself is basically contained
in Corollary 3.15, which comes from the Hahn—-Banach theorem. The centrality of
the Hahn—Banach theorem could hardly be clearer.

There is one last result, which relates compactness with polars.

Proposition 3.21. Suppose X is a Hausdorff, locally convex topological vector
space, and K is a compact, convex subset of X. Then (K°)o is compact.

Case 1. Base field = R: If K = @, then (K°), = {0} by Theorem 3.20(b), since
{0} is the smallest nonempty closed, convex, balanced set. Suppose K # @. Set

E={x+(1-1t)y:xeK,ye—K,t €][0,1]}.

E is a continuous image of K x (—K) x [0, 1], a compact set, so E is compact,
hence closed (X is Hausdorff). E is also convex (Proposition 2.14, with I = [0, 1]).
0€ Esince0=1-x+(1—1)(—x)forx € K (K #9).1f0<s<l,andz€E,
then sz = sz + (1 — 5)0 € E since E is convex. If -1 < s < 0and z € E, then
sz =—5(—z) € Esince —z€ E:ifz=1tx + (1 —1)y, then

—z=(1—=1t)(—y)+1t(—x) € E.
So: E is closed, convex, balanced, and nonempty, so (K°)o C E by

Theorem 3.20(b). As a closed subset of a compact set, (K°), is compact.

Case 2. Base field = C: As before, if K = 0, then (K°), = {0}, so suppose
K # 0. Replace K with the set constructed in Case 1; without loss of generality,
we may assume that K is also R-balanced. Set

B={tx+(0—-1t)y:xeK,yeciK,t €[0,1]}.
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As above, B is convex and compact, and B is R-balanced since K is:if —1 < s < 1,
then s(tx + (1 —¢)y) = t(sx) + (1 —¢)(sy). Finally, set

C= () V2B

0<6<2mw

C is convex and C-balanced by Proposition 2.19 (with .# = {{0}}). C is also closed
(it is an intersection of closed sets) and compact (it is a closed subset of the compact
set v/2B). C # @ since 0 € B. As above: (K°), will be compact once we know
that (K°), C C, which [via Theorem 3.20(b)] will hold once we know that K C C.

We need to show that K C ¢?/2B for 0 < 6 < 27, thatis e K C +/2B.
Now the geometry comes in: e~*? is on the unit circle in C, so e™"? = #(r) +
(1 =1)(@is), for —V2 <r < 42and =2 < 5 < /2 since the convex hull of
[—+/2, /2] U i[—+/2, /2] includes the unit circle:

So, if x € K, then

i . r .S
e"x =(@r+ l—tlsx:«/z(t—x—i— l—tl—x)ex/zB
( (1—1)is) NG ( )ﬁ
since ﬁx, %x € K (K is R-balanced). O

The next step is to use polars (and similar sets) to topologize spaces like X*.
This takes its own section.

3.6 Associated Topologies

At this point, we have all we need to construct the topologies (yes, plural!) on
X*, and most of what we need to define the topologies that come automatically
with a locally convex space (or spaces). Unlike the next section, all but one of the
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constructions use polars and polar-like objects rather than seminorms (although
seminorms appear in proofs). These topologies are produced via Theorem 3.2.
We start with the two main topologies on X *. (There will be nine [!] topologies,
on various spaces, defined in this section: two on X*, one on X', two on X, three
on %.(X,Y) and one on certain subspaces of X.)

Suppose X is a locally convex space. Using Theorem 3.2 to topologize X * via
polars, we need a family %, of convex, balanced, absorbent sets. They will be polars
of subsets of X, which automatically makes them convex and balanced. On the other
hand, A° is absorbent if and only if, for all f € X*: there is a ¢ > 0 such that
f € (A% = (¢7'A)°, thatis forall x € A : ¢ Y f(x)| = |f(c'x)| < 1, or
| f(x)| < c. This is guaranteed when A is bounded. (cf. Corollary 3.31 below).

The strong topology on X *: It is defined by the family
PBy = {A° : Ais bounded in X }.

This works, since: (¢) %A° = (24)°%; and (B) A° () B° = (AU B)°, so that %,
is closed under intersections. This topology is also Hausdorff since (| %, = {0}: if
f e X*, and f # 0,sothat 2 € f(X) (since f(X) is a nonzero subspace of the
base field): f(x) =2 = f & {x}°.

The strong topology is the “default” topology on X * that is if X * is referred to as
a locally convex space with no further words as to which topology is used, then the
topology is the strong topology. Often, for emphasis, X * (with the strong topology)
will be referred to as the “strong dual” of X.

The weak-* topology on X *: It is defined by the family
B, = {A° . Ais a finite subset of X }.

This works, since: (a) %A° = (24)°;and (B) A° () B° = (A B)°, so that B,
is closed under intersections. This topology is also Hausdorff since () %, = {0}:
if f e X* and f # 0,sothat2 € f(X) (since f(X) is a nonzero subspace of the
base field): f(x) =2 = f & {x}°.

(At this point, it should be clear that the same considerations keep coming up.)
Observe that the weak-* topology is always Hausdorff, as is the (finer) strong
topology, whether X is Hausdorff or not.

At times, in proofs, we will need to look at the algebraic dual, X', of X. The
weak-" topology on X’ is defined using the same mechanism: if A4 is a finite subset
of X, set

A" ={feX :|f(x)| < 1forall x € A} and
B,y = {A° : Ais a finite subset of X}.

This works for the same reasons as before. Note that, as a subspace of X', the
subspace topology on X * induced by the weak-" topology is the weak-* topology.
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The weak topology on X: X already has a topology, which, following Rudin
[32], we shall refer to as the original topology; but we define the weak topology on
X by the family

B, = {Ds : D is afinite subset of X *}.

This works for the usual reasons. It is Hausdorff provided the original topology was
Hausdorff, by Corollary 3.17.

At this point, we need some lemmas. For notation, we write X,, for X equipped
with the weak topology, X5, for X* equipped with the weak-* topology and X/, for
X’ equipped with the weak-" topology. (This pattern is fairly common in functional
analysis.) Observe that practically by definition, every member of X * is continuous
on X,,, and evaluation at a point of X produces a continuous linear functional on
X, These are, in fact, the only ones; while the fact that (X,,)* = X* can be
deduced now (see Exercise 5), the other statement is less than clear, and both follow
from this lemma:

Lemma 3.22. Suppose X is a vector space over R or C, and f, fi,..., fn are
linear functionals on X for which ¥V x € X:

A =1, =1= /)] =1

Then f = Xc; f; for constants cy, ..., cy.

Proof. Let Y = (\ker f;. Note that | f(x)] < 1 forall x € Y. But f(Y)isa
subspace of R or C, so f(Y) = {0}.

Now look on X /Y. Note that dim(X/Y) < n, and the linear functionals induced
by fi,..., fu span the algebraic dual of X/Y for linear-algebra reasons. (Think
of X/Y as R" or C", and fi,..., f, as rows of an n x m matrix. If its nullity is
zero, then rank is m [rank-nullity theorem], so the rowspace consists of all 1 x m
matrices.) But f also induces a linear functional on X /Y, which is now a linear
combination of those induced by fi,..., f;. O

Corollary 3.23.

(a) (Xy)* = X*, as sets.
(b) Every continuous linear functional on X, is evaluation at a point of X.
(c) Every continuous linear functional on X, is evaluation at a point of X .

Proof. (b) [This part contains the main points.] Let F denote the base field, R or C.
Suppose G € (X,)*. Then G~'({c € F : |c| < 1} is a neighborhood of zero
in X}, so it contains some A°, A = {x;,...,x,} C X.Hence

lfGol =1 .. [fG)l =1= fed” = |G() =L

so that G(f) = X'¢; f(x;) by Lemma 3.22. Hence G(f) = f(Xc;x;).
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(@ If f € X',and {x € X : |f(x)| < 1} contains Do, D = {fi,..., fu} C X*,
then (as above) f = Xc; f; € X*.

(c) Justlike (b), except the pointin X actually is unique even if X is not Hausdorff,
since X’ does separate points. O

The next point comes from an observation. Again, letting FF denote the base field,
RorC, X* and X’ consist of F-valued functions on X. That is, quite literally:

X*cXx c HIF.
x€X

Proposition 3.24. The weak-* topology on X*, and the weak-' topology on X', are
their subspace topologies of the product topology on [ | ,cyx F.

Proof. We need only work with X’, since the weak-" topology on X’ induces the
weak-* topology on X *.
Every product neighborhood of zero contains a weak-" neighborhood of zero:
Suppose f € X', and | f(x1)| < €1,...,]|f(xn)| < €, a typical requirement for
a neighborhood of zero in [ F. This can be enforced by requiring that

2 2
'f (—xl) <1, ....|f (—xn) <1, thatis
€1 €y
2 2 )
f e %—xl, e —xn}
€1 €y

Every standard weak-" neighborhood of zero is the intersection of X’ with a
product neighborhood of zero:

If A= {xi,...,x,}, then f € A° when every | f(x;)| < 1, and that defines a
(closed) product neighborhood. O

We need to say more to make use of this.
Proposition 3.25. X’ is a closed subspace of [ |,.cy F.

Proof. X’ is the intersection of the kernels of all the following continuous linear
functionals on [[,cy F : For f € [[,cx F,

Vx,yeX:f—fx)+ 1) —-fx+y)
VxeX,VceF: fcf(x)— flcx).
All these are made up of coordinate evaluations, and so are continuous.
O

By the way, X ™ is not necessarily closed in [ F. In fact, X* is dense in X’ in
the weak-’ topology; see Exercise 4.
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Theorem 3.26 (Banach—Alaoglu). Suppose X is a locally convex space, and U is
a neighborhood of zero in X. Then U° is weak-* compact.

Proof. Let C be a closed, convex, balanced neighborhood of 0 contained in U, and
let pc denote its support function. pc is a continuous seminorm by Theorem 3.7.
If f € X and |f(x)] < pc(x) forall x, then f € X* by Theorem 3.9. Finally, if
f € U®, then for all x € X (cf. Proposition 3.3):

Ve>0:pc(x)+eel, = xe(pcx)+e)C C(pclx)+e)U
1

Pc(x)+€x)‘ =1

= |f()] = pc(x) + €.

:>—pc(x)+GXEU:>‘f(

Since this holds foralle > 0, f € U° = | f(x)| < pc(x). Hence U° is a weak-*
closed (by its definition) subset of the compact (Theorem A.16) set

X' 0 [te €Filel < pex)}. o
x€X
We can now define our second new topology on X.

The Mackey topology on X: It is defined by the family
By = {Ds : D is convex and weak-* compactin X *}.

This works for the usual reasons, with one major glitch: Do (| Eo = (D |J E)., but
D | E is not convex. However,

G={tf+(—-t)g: feD,gekE,tel0]l]}

is compact (it is a continuous image of D x E x[0, 1]) and convex (Proposition 2.14),
and Go C Do () Es. Observe that by the bipolar theorem (applied to X',) and
Proposition 3.21, we can replace D with (D), so that:

Py = {Ds : D is weak-* compactin X* and D = (D,)°}.

Finally, while the weak topology is coarser than the original topology, the Mackey
topology is finer by Banach—Alaoglu: if U is an original neighborhood of 0, and V'
is a closed, convex, balanced neighborhood of 0 contained in U, then V = (V°),
(bipolar theorem) while V° is weak-* compact, so

UDV =€ PBu.
Now any member of X* is continuous in the original topology, hence is continuous

in the finer Mackey topology. In fact, we should pick up more continuous linear
functionals, but we don’t.
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Proposition 3.27. If X is a locally convex space, then any f € X' which is
continuous when X is equipped with the Mackey topology, belongs to X *.

Proof. Suppose f € X', and f is Mackey-topology-continuous. Then {x € X :
| f(x)| < 1} contains a Mackey neighborhood of zero, D,, with D = (D,)°, and
D being weak-* compact, convex, and balanced. (All polars A° are convex and
balanced.) Look at D as a subset of X’ with the weak-" topology: In that context,
D is compact (hence closed in X :v/!), convex, and balanced; so D = (D°), by the
Bipolar theorem applied to X/,. But by Corollary 3.23(c), the dual of X, “is” X,
so that

D°in(X))* < Doin X
(D)o in X!, < (Do) in X’

soD = (Do)°/.
But {x € X : |f(x)] < 1} D Do, so |f(x)] < 1 for all x € D,. Hence
feD) =DcCX* O

So, we started with a locally convex topology on X, and produced the weak
topology (which was weaker) and the Mackey topology (which was stronger). Both
were really constructed from X as a vector space, with the only relevant datum being
that X * was its dual space. Now freeze X * and let the original topology float: there
are various locally convex topologies on X for which X * is the dual. The finest is
the Mackey topology, while the coarsest is the weak topology. In many applications,
that finer topology arises automatically (cf. Sect. 4.1).

Definition 3.28. Suppose X is a Hausdorff locally convex space. X is called a
Mackey space if the original topology on X agrees with the Mackey topology.

There are a few final notes concerning these topologies, before going on to
spaces of linear transformations. The first is basically an observation, but it deserves
isolation as a theorem:

Theorem 3.29. Suppose X is a locally convex space, and C is an originally closed,
convex subset of X. Then C is weakly closed.

Proof. Proposition 3.12 (along with Proposition 3.14 if the base field is C) provides
a means of separating C fromany x ¢ C, by setting C; = C,C, = {x} : {y € X :
F(y) > ro} is a weakly open neighborhood of x in X — C. O

In particular, the original topology is locally weakly closed. Continuing in this
manner, the strong topology on X* is locally weak-* closed. In fact, the strong
topology on X * is the finest locally convex topology on X * which is locally weak-*
closed, cf. Exercise 7. While we have no application for this, it is illuminating.

Now, suppose X and Y are two locally convex spaces. There remain the three
topologies on .Z.(X,Y)—the space of continuous linear transformations from X
toY.
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The topology of bounded convergence: If A is bounded in X, and U is a
convex, balanced neighborhood of 0 in Y, set N(4,U) = {T € Z.(X,Y) :
T(A) C U}. The topology of bounded convergence is defined by

By = {N(A,U) : Aisboundedin X and U is

a convex, balanced neighborhood of 0 in Y'}.

Note that if T € Z.(X,Y), then for A bounded in X, T(A) is bounded in Y,
so that if U is a convex, balanced neighborhood of 0 in Y, then 3¢ > 0 for
which T(A) C cU, that is ¢7'T(A) C U, thatis ¢7'T € N(A,U), that is
T € ¢N(A,U). Hence each N(A,U) is absorbent. Also, 1 N(4,U) = N(24,U),
while N(A,U) (N(B,V) D N(AU B,U N V), so Theorem 3.2 works here as
well.

The topology of pointwise convergence: It is defined by the family

B, ={N(A,U): Aisfinitein X and U is

a convex, balanced neighborhood of 0 in Y'}.

By the way, especially when X = Y and X is a Banach space, the topology
of pointwise convergence goes by the totally confusing title of the strong operator
topology. There is also a weak operator topology, which is just the topology of
pointwise convergence on .%.(X,Y,,), restricted to .Z. (X, Y). Observe that these
topologies can also be applied to the space of bounded linear transformations from
X to Y. Also, the topology of bounded convergence on .Z. (X, F) is just the strong
topology (Exercise 8).

Now for that subspace topology. For later clarity, the space will be Y.

Proposition 3.30. Suppose Y is a Hausdorff locally convex space, and suppose D
is a nonempty, bounded, closed, convex, balanced subset of Y. Then the domain of
the Minkowski functional pp:

YD=UrD

r>0

is a subspace of Y, and (Yp, pp) is a normed space with the closed unit ball D.
Furthermore, the norm topology on Yp is finer than the topology induced from
Y, so that any f € Y* restricts to a norm-continuous linear functional on Yp.
Finally, if D is sequentially complete as a subset of the topological group (Y, +),
then (Yp, pp) is a Banach space.

Proof. rD + sD = (r + s)D by Proposition 3.3, so D is closed under addition.
It is closed under multiplication by any #+r (respectively any re’?) when the base
field is R (respectively C), so Y is a subspace. The Minkowski functional pp is a
seminorm by Theorem 3.7.
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If x # 0, x € Yp, then 3 a convex, balanced neighborhood U of 0 with x & U
since Y is Hausdorff. 37 > O with D C rU since D is bounded, so that »~'D C U,
giving x ¢ r~'D and pp(x) > r~! > 0. Thus, pp is actually a norm.

Now, if x € D, then pp(x) < 1. Butif pp(x) < 1, then

1 1
polll——)x])<1--x<1
n n

1
= (1 - —) xeD (Theorem 3.7)
n

= x = lim (1 — l) xeD (D is closed).
n—o00 n
Thus, D is the closed unit ball in (Yp, pp).

If U is any convex balanced neighborhood of 0 in Y, then the fact that D C rU
for some r > 0 shows that ¥~'D C U () Yp, so that the induced-topology
neighborhood U () Yp of 0 contains a pp-neighborhood, so the norm topology is
finer than the induced topology.

Finally, suppose D is sequentially complete. Let (x,) be a Cauchy sequence in
(Yp, pp). If U is a neighborhood of 0 in Y, then D C rU for some r > 0 since D
is bounded. If pp(x) < r~!, then pp(rx) < l,sorx € D C rU, thatisx € U.
Thus, pp(xy, — Xn) < r~' = x, — x,, € U. This can be forced by making m
and n large, so (x,) is Cauchy in Y. Now (x,) is bounded in (Yp, pp), soIs > 0
such that all x,, € sD. But now s~'x, € D for all n, and (s~'x,) is Cauchy in Y,
Xy —xm € sU = s7'x, —s7'x,, € U),s0s 'x, — y forsome y € D since D is
sequentially complete. Hence x,, — sy in Y since multiplication by s is continuous.
It remains to show that x, — sy in (Yp, pp).

Suppose ¢ > 0. Choose N so that m,n > N = pp(x,;, — x,) < &. Then for
m,n > N, pp(e'(x, — xn)) < 1, sothat e~'(x, — x,,) € D, thatis x, — x,, €
eD. Now freeze m and let n — oo. Then x, — x,, - sy — x,, in Y, and eD is
closedin Y, so sy — x,, € eD whenm > N. Thatis, e~'(sy — x,,) € D, so that
pp(e™'(sy —x,)) < 1, 0r pp(sy — x,) < & whenm > N. That gives norm
convergence. O

Corollary 3.31. Suppose X is a locally convex space, and A C X. The following
are equivalent:

(i) A is originally bounded, that is A is bounded when X is equipped with the
original topology.
(ii) A is weakly bounded, that is A is bounded when X is equipped with the weak
topology.
(iii) Every f € X* is bounded on A.
(iv) A° is absorbent.
(v) Every continuous seminorm p on X is bounded on A.
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Proof. (i) = (ii) If A is absorbed by all original neighborhoods of zero, then 4 is
absorbed by weak neighborhoods of zero, since weak neighborhoods of
zero are original neighborhoods of zero.

(ii) = (iv) If A4 is absorbed by all weak neighborhoods of zero, then V f € X*:
{f}o absorbs A, so that A° absorbs { /' } [Theorem 3.20(e)]. That is, A°
is absorbent.

(iv) = (iii) If f € cA° ¢ > 0,then ¢c™' f € A°, so that |¢~! f(x)| < 1 for all
x € A, thatis | f(x)| < c forall x € A.

i)= (v) U = {x € X : p(x) < 1} is a neighborhood of 0, and A C rU(r €

R,r >0) = p(x) <rforall x € A.
(v) = (iii) | f] is a seminorm. Finally,
(iii) = (i) Let Y denote X* equipped with the weak-* topology, and suppose U
is a closed, convex, balanced neighborhood of 0 in X. Set D = U°.
D is nonempty, closed, convex, and balanced: All polars are. D is
also weak-* compact in Y by the Banach—Alaoglu theorem, hence is
complete in (Y, +) by Corollary 1.32, hence is sequentially complete, so
that (Yp, pp) is a Banach space. If x € A, let E, denote evaluation at
x; by assuming (iii), we are assuming that the set {E,} is a pointwise
bounded family of continuous linear functionals on (Yp, pp), so that
{ E.} is operator-norm bounded by the Banach—Steinhaus theorem (a.k.a.
the uniform boundedness principle) for Banach spaces. That is, 3 M such
that Vx € A : |Ex(f)| < Mpp(f) for f € Yp. In other words,
Vx € A:|f(x)] < Mpp(f),sothat f € D = |f(x)] < M =
| f(M~'x)| < 1. But that just means that M ~"'x € Do = (U®)o = U
since U is closed, convex, and balanced. Hence M !4 C U,so A C
MU.
O
The preceding is very important, and is typical of how the Banach—Alaoglu
theorem and some auxiliary constructions such as (Yp, pp) arise in practical
situations. Also, the completeness argument in Proposition 3.30 illustrates the utility
of having a topology (in this case the norm topology on (Yp, pp)) which is locally

closed in a coarser topological space Y. Proposition 3.30 will be used in Sects. 3.8,

4.1, and 6.1; it is quite handy at times. Finally, we now know why the sets A with

polars that were taken to form the strong topology on X* were originally bounded,

while they “only” had to be weakly bounded to make their polars absorbent: the two
notions of “bounded” coincide.

3.7 Seminorms and Fréchet Spaces

If X is a vector space over R or C, and p : X — R is a norm, then (X, p) is a
normed space with a well-defined topology given by the metric d(x, y) = p(x—y).
The resulting space is Hausdorff and locally convex. If p is only a seminorm, then
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one can still make X into a locally convex space; it just will not be Hausdorff.
How about a whole family of seminorms? You can still use the family to make a
locally convex space, and this is how some spaces are most naturally defined.

For technical reasons, it pays to start the process with families that are directed.
If p; and p, are seminorms on a vector space X over R or C, then p; < p, when
p1(x) < pa(x) for all x € X. A family .% of seminorms is directed if for all
P1, P2 € F, there exists p; € .% for which p; < p; and p, < p3. Note that if one
sets, for p € F and 0 < r < o0,

B(p,r)={xe X :pkx)<r},
then

pr<prandr >s5 = B(p1,r) D B(p2,s),

since pa(x) <s = pi1(x) < p2(x) <s <r.

Definition 3.32. Suppose X is a vector space over R or C, and ¥ is a directed
family of seminorms on X . Set

PBo={B(p,27"): pe.F,neN}.

Then %, satisfies the conditions given in Theorem 3.2:

B(p3,27") C B(p1,27") | B(p2,27")

if p1 < ps, p2 < p3, and £ = max(m, n). The topology induced by .% on X is the
topology produced by Theorem 3.2, that is the topology having % as a base at 0.

Several things are worth noting. First of all, if .# is countable or finite, then %,
is countable. Second, the procedure can be reversed:

Proposition 3.33. Suppose X is a locally convex space over R or C. Let %, be a
base at 0 for the topology consisting of convex, balanced sets. Set

ﬂ‘:{pV:Veﬂl}.

where py is the Minkowski functional associated with V, as described in Sect. 3.2.
Then F is a directed family of seminorms on X, and the topology on X induced by
ZF is the original topology on X.

Proof. Each py is a seminorm (Theorem 3.7), and if U,V € %,, AW e %, with
W C U(V.But, for example, W C U = (x € tW = x € tU), so that
VxelX,

{t=>0:xetW}C{t>0:x¢ectU}, sothat

pw(x) = py(x),
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by looking at the left endpoints of the corresponding intervals. It follows that W C
UNV = pw > puv and py > py.Hence .Z is directed.

Each py € .% is continuous in the original topology (Theorem 3.7), so all
elements of % are open in the original topology. Since 4 is a base for the original
topology:

YU € 8,3V € B, st.V C U. (%)
Butif V € %4, then B(py,1) C V by Theorem 3.7, so
VVe%b 3IU € Byst. U CV. (%%)

Combining (x) and (xx), a subset A of X contains a member of % if and only if
it contains a member of #, so Ay and A, give the same answer to the question, “Is
0 interior to A?” (See step 2 in the proof of Proposition 1.8.) Since both topologies
are translation invariant, and produce the same interiors, they are the same. O

Corollary 3.34. Suppose X is a locally convex space over R or C. Then the
topology of X is given by a directed family of seminorms. This family can be chosen
to be countable if X is first countable.

Proof. A, exists by Proposition 3.1. O

By the way, Reed and Simon [29] define a locally convex space this way.
What does one do if the family is not directed? There is a standard construction
that goes as follows, if .% is any family of seminorms.

PEF
2. If Zy is countably infinite, write %y = {p1, p2, p3, ...}, and set

1. If % is finite, set .F = { > p}.

F

zn:pj:nzl,Z,...
j=1

{p1.p1+ p2.pr +p2+ p3....}

3. If .%; is uncountable, set

F = Z p : F is a finite subset of .%
PEF

Suppose x, — x in the .Z-topology, where (x,) is a net, and .% is defined above.
Then p(x, —x) — 0in R for all p € .% since each p € .% is continuous. Hence
p(xe—x) — Oforall p € %, by squeezing. On the other hand, if (x,) is anetin X,
and x € X, and p(x, —x) — Oforall p € %y, then p(x, —x) — Oforall p € .F
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(finite sums), so that for all n € N, there exists § such that > 8 = p(xy — x) <
27" thatis x, € x + B(p,27"). That is, x, — x in the topology induced by .%#
if and only if p(xy — x) — 0 for all p € %. In particular, the convergent nets
[and thus the topology, by Proposition 1.3(a)] does not depend on the ordering of
the seminorms in Case 2 above.

Now suppose .# = {pi,pa, ...} is a countable (ascending) sequence of
seminorms on X. For x,y € X, set

oo

d(x,y) = Zz—f

Jj=1

pj(x—y)
1+pi(x—y)

For the usual reasons, this defines a metric on X provided . is separating, that
isx # 0 = p(x) > 0 for some p € .%. The triangle inequality holds because
a,b > 0 gives

/“+b dx _/“ dx </“ dx
y  (+x)?2 Sy Q+b+x)?2 " Jy (1 +x)?

a+b b a

that i — < .
T a+bs 14b - 1+a

This metric is translation invariant as well. Finally, note that if x, — x in the
metric topology, then every p;(x, — x) — 0 (squeezing), while if x, — x in
the .# -topology, then every p; (x, —x) — 0, so that d(x,, x) — 0 by the Lebesgue
dominated convergence theorem for integrals (i.e., sums) over the positive integers
(dominating function 27/). Thus, the metric gives the .% -topology. We have (nearly)
proved:

Theorem 3.35. Suppose X is a Hausdorff locally convex space. Then the following
are equivalent:

(i) X is first countable.

(ii) X is metrizable.
(iii) The topology of X is given by a translation invariant metric.
(iv) The topology of X is given by a countable family of seminorms.

Proof. The earlier discussion gives (iv) = (iii). The implications (iii) = (ii) and
(i) = (i) are direct, while (i) = (iv) comes from Corollary 3.34. O

Next, a few words about completeness. A Hausdorff locally convex space (for
that matter, a Hausdorff topological vector space) X is called complete (respectively,
sequentially complete) if the additive topological group (X, +) is complete (respec-
tively, sequentially complete) as a topological group. Completeness and sequential
completeness for subsets also refers to (X, +) as a topological group.

Corollary 3.36. Suppose X is a Hausdorf{flocally convex space. Then the following
are equivalent:
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(i) X is first countable and complete.
(ii) X is metrizable and complete.
(iii) The topology of X is given by a complete, translation invariant metric.
(iv) X is complete, and the topology of X is given by a countable family of
seminorms.

Proof. Thanks to Theorem 3.35, the only issue is the variation in “completeness” in
condition (iii). Sequences are all we need to consider, thanks to Theorem 1.34.

The idea is this: A sequence (x,) is Cauchy in the locally convex topology
exactly when we can force d(x, — x,,,0) < & by requiring both n and m to be
large. But

d(x, — x,,0) =d(xy — X + X, 04+ xp) = d(Xn, X))

since d is translation invariant. That is, d and (X, +) have the same Cauchy
sequences (as well as the same convergent sequences), so if one is complete, then
so is the other. O

Definition 3.37. A Fréchet space is a Hausdorff locally convex space satisfying
any (hence all) of conditions (i)—(iv) in Corollary 3.36.

By the way, for historical reasons (mainly Bourbaki [5]), a Fréchet space is
usually defined using condition (ii). When reading condition (ii), keep in mind that
“complete” really refers to X as a locally convex space, not to the metric appearing
in “metrizable.” It is only for translation invariant metrics that one can identify
metric-Cauchy sequences with topological group-Cauchy sequences.

Examples of Fréchet Spaces

I. R[[x]] and C[[x]]. (Formal power series.) The nth seminorm of Y _ a,x" is |a,|,

or ) |a;| once these are transformed into a directed set. This is one of the
i=0

simplest, yet it illustrates a complication with the earlier constructions. The

metric gives

() a,x".0) = iz—"—Z’}:O'afl
ni far 1 +Z;’=O|a1|

With this metric, the ball of radius r need not be convex!
Example. r = 1.4, f(x) =2, and g(x) = 16x

.2 4
d2.0)=> "2 3=3 <14
n=0
16

d(16x 0)—%2—”E——<14
7 71
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- 9
d(1 + 8x,0) = 5+Zz—"-E =14
n=1

There is a way to get around this—replace all those sums earlier in this
section with maxima. Rudin [32] does this. The cost is that some arguments
become complicated due to the unavailability of convergence theorems for
sums (i.e., integrals) over the positive integers.

C(H), the continuous functions on a locally compact, o-compact Hausdorff
space. H can be written as

H = K,

(@

—_

n

where each K, is compact, and each K, C int(K,+;). Set

pu(f) = max | f(K,)|.

Fréchet space convergence is uniform convergence on compact sets.

2 (U), the space of holomorphic functions on a region U C C. The topology
here comes from C(U), via Example II.

C>°(R"), the space of C*° functions on R”".

\I\f
pu(f) = max § | S ()| ¢ x| < .1 < }
I =(,...,iy)and |I| =iy + -+ + i, comes from standard multiindex nota-

tion.) This example can be expanded to a C*° manifold which is o-compact.
Z(R), the Schwartz space of rapidly decreasing functions on R. The nth
seminorm is

p(f) = sup (14 |xD" S,

0<j=n

< (R) is defined as the subset of C°°(R) for which these seminorms are
all finite.
(From Sect. 3.1). Suppose m is Lebesgue measure on [0, 1].

X = ﬂ LP(m).

p>1

The nth seminorm is just ||  ||,. It is left to the reader to check that these norms
suffice.
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3.8 LF-Spaces

As noted in the Preface, a majority of the topological vector spaces used in analysis
are Banach spaces. Also, a majority of the remaining spaces are Fréchet spaces.
In fact, nearly all the spaces routinely used in analysis are one of four types:
Banach spaces, Fréchet spaces, LF-spaces, or the dual spaces of Fréchet spaces or
LF-spaces. (The dual space of a Banach space, of course, is another Banach space.)

There is a conundrum associated with the definition of an LF-space, which also
arises (but is resolved differently) in commutative algebra. Nobody would disagree
with the idea that every principal ideal domain is a unique factorization domain,
but there is a (slight) discomfort in noticing that every field is a principal ideal
domain. The discomfort arises from vacuity (e.g., “Every nonzero nonunit is a
prime or a product of primes.”) or exceptions (e.g., “A principal ideal domain has
Krull dimension one—unless it is a field, which has Krull dimension zero”). Here, a
Banach space is always a Fréchet space—nobody disagrees with that. However, an
incomplete reading of the definition may lead one to conclude that a Fréchet space
is automatically an LF-space. In fact, that is excluded. (Note: Some authors do not
exclude it, and use the term “strict LF-space” for what we call an LF-space. They
also [usually] allow examples such as that of Exercise 18.)

Definition 3.38. An LF-space is a vector space X over R or C for which

o0
X =Jx.
n=1

where each X, is a subspace of X equipped with a Hausdorff, locally convex
topology making each X, into a Fréchet space, subject to the following three
constraints:

1. Each X, C Xn+l-
2. The topology X+ induces on X, is its Fréchet space topology.
3. X, # X forall n.

The LF-topology on X is defined via Theorem 3.2, using the base:

PBy = {B C X : B is convex and balanced, and B ﬂ X,isa

neighborhood of 0 in the Fréchet topology of X,,.}

Observe that since each X, is complete, it is closed (Proposition 1.30), so thanks
to constraint 3, an LF-space is always first category. One more definition, which we
return to later and in Sect. 4.3: an LB-space is an LF-space in which the subspaces
X, are actually Banach spaces.

Examples of LF-Spaces

I. R[x] or C[x]. (Polynomials.) Here, X, consists of polynomials of degree < n.
The topology on X,, can be taken as its Euclidean topology, since X, ~ F"*!:
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ao
n A ai
E ajx! <
j=0

an

II. C.(H), the continuous functions with compact support on a noncompact,
locally compact, o-compact Hausdorff space. H can be written as

H = K,

(@

—_—

n

where each K, is compact, and each K, C int(K,+;). Set

Xp ={f € Cc(H) : supp(f) C K.

The topology on X, is given by || f|| = max | f(K,)|.
II. C2°(R™), the space of C* functions on R with compact support. Letting B,
denote the closed ball of radius r,

Xy ={f € CZ®R") :supp(f) C B,}.

The Fréchet topology on X, is the one it gets as a (closed) subspace of
C>°(R™). This example can be expanded to a C *® manifold that is o-compact
but not compact.

Examples I and II above are LB-spaces, while Example III is not. Example III
is so important that it is conceivable that LF-spaces, as a class of locally convex
spaces, would be defined even if Example III were the only example.

One other feature stands out about the examples: The inclusions X, — X, are
actually isometries, when one uses the metrics associated with the [semi]norm[s]
used in the previous section. It turns out that this can always be arranged (Exercise
14), but this fact is not particularly useful.

It is immediately evident that the topology given in Definition 3.38 works: %,
is evidently closed under intersections and multiplication by % However, anything
else will take some work. There is a fundamental construction that needs a lot of
discussion. This construction basically works between X, and X,4;; it will be
referred to as the “link” construction (not a standard term), because it will form
a link in the chain of containments

Xk CXk.H CXk+2C"'CXn C X,,.H C:--

T

here
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Given: a convex, balanced neighborhood U,, of 0 in the Fréchet space X,,, and
another convex, balanced neighborhood U,4; of 0 in the Fréchet space X, 41,
subject to the condition: U+ () X, C U,. Set

L(Uns Un-H) = {t'x + (1 - t)y X € Unsy € Un+lst € [07 1)}

The basic properties here are easily established, and will be immediately used in
the next proposition. These results will subsequently be referred to by their “Fact
number.”

1. L(U,, Uy,41) is convex and balanced, and L(U,, U,+1) D Uy, 41.
L(U,,U,4) is convex by Proposition 2.14, while if x € U,, y € U,41,
t €[0,1),and |c| < 1, then

ctx + (1 =0)y) =1t(cx) + (1 =1)(cy) € L(Un. Unt1).

Finally, takingt = 0, y € L(U,, U,+1).
2. [0, 1)U, is contained in the interior in X,+1 of L(U,, U,+1):
If0 <t < 1,thenforall x € Uy, tx + (1 — t)U,+, is a neighborhood of ¢x
in X,41,and tx + (1 —6)Uy41 C LUy, Uyy).
3. LUy, Upyy) ﬂXn C Uy
Ifo<t<l,xeU,andy € U4, withz =tx + (1 —t)y € X, then
y=(0-1t)"Yz—1tx) € X,,50y € Upy1() X, C U,. Hence z € U, since U,
is convex.
4. If U, is open in X,,, then L(U,, Uy1) (\ Xy = U,.
From facts 2 and 3, [0, 1)U, C L(U,, Uy+1) (| X» C U,.But U, = [0, 1)U,
when U, is open (Theorem 2.15).
5. If Uy is open in X, then L(Uy,, Uy41) = con(U, | U,+1), the convex hull of
Un and U,,.HZ
L(U,,U,+;) is convex (Fact 1), and everything in L(U,,U,+;) lies in
con(U, | Uy+1) by Proposition 2.12. On the other hand, U, C L(U,, U,+1)
when U, is open, and U,+; C L(U,,U,+1) by Fact 1, so U, | JU,4+1 C
LU,,U,+1), giving con(U, U U,+1) C L(U,,U,41).
6. If Uyt is open in X441, then L(Uy,, Uy41) is open in X, +1:

LW Ui = |J U x + 0 =000,

0<t<l x€U,

It seems clear at this point that the link construction works best with open
sets, and for the full chain construction we shall make that restriction. Suppose
we have a sequence of convex, balanced sets (U, ), starting at some k and going
to 0o, where each U, is open in X,,, with U, D X,, (| U,+1. Recursively define

Vi = Uk Va1 = LV, Upgr).
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The “chain” is (V;,), and will be so referred to in the next few “facts.” The next
two make our construction legitimate.
7. Foralln >k, U, C V,:
True when n = k by definition; true for n 4+ 1 by Fact 1. (This is not an
induction.)
8. Foralln >k, Uyy1(\ Xy C Vy:
U,+1() X, C U, by assumption, so that U,+; (| X, C U, C V, by Fact 7.
9. Foralln >k, V, is open in X,,.
True when n = k by definition; true for n 4+ 1 by Fact 6. (This is not an
induction, either.)
10. Foralln >k, Vyp1 (N Xu = Vi
True by Fact 4, which applies by Fact 9.
11. Foralln >m >k, V, (X = Vi
True when n = m by definition; if V,, (X, = Vi, then V1 (X =
Vat1 () X0 () X = Vi () Xin = Vi by Fact 10. (This is an induction, on 7.)
o0
12. V. = |J Vy is a convex, balanced, LF-neighborhood of 0 in X, for which
n=k
VN Xm = Vi for eachm > k:
This is an ascending (Fact 10) union of convex balanced sets, so it is convex
and balanced. Since it is ascending, for any m > k:

e () e

It follows that V' belongs to our LF base.
We are now ready for our first main result.

Proposition 3.39. Suppose X is an LF-space, constructed from an ascending union
of Fréchet subspaces (X,,). Then:

(a) The LF topology on X induces the (original) Fréchet topology on each Xj.

(b) X is Hausdorff.

(c) If Y1 C Y, C --- is an ascending sequence of subspaces, with X = \JY,, and
each Yy being a Fréchet space in the induced topology, then

(cl) VkaAn: X, CY,.
(c2) Vnik:Y, C X.
(c3) X has the LF-topology associated with the sequence of subspaces (Yy).

Proof. (a) If B € %, where %, is the base defined in Definition 3.38, then
B () Xk is a neighborhood of 0 in Xj, so the induced topology is at least
coarser than the Fréchet topology on Xj. But if Uy, is any open, convex, balanced
neighborhood of 0 in Xy, one can define a sequence (U, ) recursively as follows:
Uy is given, and for each n:
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U, is an open, convex, balanced neighborhood of 0 in X,, which has
the topology induced from X,+1, so one can choose an open, convex,
balanced neighborhood U,y of 0 in X+ for which U,+, (\ X, C U,.

Now form the chain construction to (U,), manufacturing (V,,). V = UV, €
By, and V (| X = Vi = Ui by Fact 12. Hence the induced topology is finer
than the Fréchet topology on Xj.

(b) Given x # 0: x € X for some k. Choose an open, convex, balanced
neighborhood Uy of 0 in X for which x ¢ Uy, and repeat the construction
above for part (a): x € V,so x ¢ {0}~ (Proposition 1.9), so X is Hausdorff
(Corollary 1.11).

(cl) Each Y, is complete, hence closed in X (Proposition 1.30), so Y, () X is

closed in X by part (a). Since X = | Yy,

o0

Xy = (Q Yn) (X = ) X0,

n=1

so 3 n, for which the interior of (¥, (1) Xx) in X} is nonempty (Baire category).
That is, [0, 1)(Y, () Xk) is an open neighborhood of 0 in X} (Theorem 2.15).
But Y, () X is a subspace, so [0, 1)(Y,, () Xx) = Y, [ Xk, s0 Yy, () Xk is an
open subspace of X, and so Y, (| Xx = Xi, giving Xx C Y,,.

(c2) Each Xj is complete, hence closed in X (Proposition 1.30), so X () Yy is
closed in Y, by assumption. Since X = J Xi:

Y, = (U Xk) Y. = J& )Y,
k=1 k=1

so 3k for which the interior of (Xj () ¥,,) in Y, is nonempty (Baire category).
[The rest of the argument is as for (c1), with ¥, and X} reversed.]
(c3) Set

B = {B C X : B is convex and balanced, and

B (") Yy is a neighborhood of 0 in ¥,,.}.

If B € %, then Vn, Ik with ¥, C Xj [part (c2)], and B[ Xy is a
neighborhood of 0 in X, so B (Y, = (B[ Xx) () Y» is a neighborhood of
0in Y, (Y, has the topology induced from X} by part (a) and “transitivity” for
induced topologies). Hence B € %;.

If B € %), then Vk, In with X; C Y, [part (c1)], and B[ Y, is a
neighborhood of 0 in ¥,,, so B () Xy = (B[ Yx) ) X is a neighborhood of
0 in X} (transitivity again). Hence B € .

So: By = P, so the LF topologies coincide. O
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The proof of part (c3) gives some glimmer of why, in defining %, we did not
assume that the intersection B (] X was an open neighborhood of 0 in X}, hence
(eventually) compatible with the chain construction. This glimmer will become even
clearer in Sect.4.1.

In what follows, we shall write “X = [ J X, is an LF-space,” meaning (X,)
is an ascending sequence of Fréchet spaces for which the union is X, with all the
assumptions made for constructing an LF-space. What part (c3) does is make this
unambiguous: X is [in some way] an LF-space, and (X, ) is an ascending sequence
of Fréchet subspaces, with the union X.

Proposition 3.40. Suppose X = |J X,, is an LF-space, and U is a convex subset
of X. Then U is open in X if, and only if, U (| X, is open in X, for all n.

Proof. If U is open in X, then U (X, is open in X, for all n, by Proposi-
tion 3.39(a). On the other hand, suppose U is convex in X, and U (] X,, is open
in X, for all n. Suppose x € U; then x € X} for some k, so (U — x) () Xx is
an open neighborhood of 0 in X}. Choose an open, convex balanced neighborhood
Uk of 0 in Xy, with Up C (U —x) () Xx = (U () Xx) — x. Now extend this to a
sequence (U,) by requiring that U, 4+; be an open, convex, balanced neighborhood
of 0 in X, 4+ for which

Uit1 C U _x)an+l =U an+l) —x and U, 4+, an cU,.

Forming the chain construction to produce (V) and V, each V,, C U — x by
induction on n: if n = k, then V, = U, ¢ U — x, while if V, C U — x,
then V,4+; = L(V,,U,+1) C U — x by Fact 5, since U — x is convex. Hence
V=UV,CU-—x,so(since Ve HB),x~+V CU,sothat x € int(U). Since x
was arbitrary, U consists of interior points, and so is open. O

By the way, the preceding is sometimes used to define the LF topology. It is,
however, a bit difficult to work with initially. It is handy for many applications:

Corollary 3.41. Suppose X = |J X, is an LF-space, Y is a locally convex space,
and T : X — Y is a linear transformation. Then T is continuous if, and only if,
T |X is continuous on X, for each n.

Proof. If T is continuous on X, then T\ . 1s continuous on X, by definition of the

induced topology, so suppose T| . 1s continuous on X, for all n. If V' is an open

convex neighborhood of 0 in Y, then T\;I(V) is open in X, thatis T~ (V) N X,
is open in X,,. Since T~!(V') is convex [Proposition 2.17(c)], T~ (V) is open in X
by Proposition 3.40, and so T is continuous by Proposition 1.26(a). O

Our next subject is completeness. For this, we will need several more little facts,
this time concerning nets. We will also need a lemma about the chain construction.
First, the lemma:
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Lemma 3.42. Suppose X = | J X, is an LF-space. Concerning the chain construc-
tion, starting atk = 1:

(a) If U is an open, convex, balanced neighborhood of 0 in X, then setting U, =
U (N X, and applying the chain construction produces (in the earlier notation)
Vo,=U,andV =U.

(b) If (U, and (U,) are sequences of convex, balanced, open sets to which the
chain construction is applicable, yielding (V,,) and (V,), respectively, then

~Vn:U,cU)= (Nn:V,CV).

(c) If (Un) is a sequence of convex, balanced, open sets to which the chain
construction is applicable, yielding (V,) and V = \JV,, then X, +V =V,
where one sets

X, ifn </t

U:
§ U, ifn>1{

and applies the chain construction to (U,), yielding (V,) and then V.
Proof. (a) U, = V, by inductionon n.n = 1 : Uy = V) by definition. If U,, =

Vi, then since U, = U (X, = U Xu+1 ﬂX = U1 Xus Va1 =
L(V,,Uy41) = con(U, | Up41) = con(Uy,+1) = U, by Fact 5, since Uy 4
is convex.

(b) If U, c U, forall n, then V,, C V, for all n by inductiononn.n =1:V, =
U cU =WV.IftV, C V,,,then V,,+1 = L(Vy,Upt1) = con(V, JUp41) C
con(V, JUn+1) = L(Vy, Uyt1) = Vi1 by Fact 5.

(c) U* = X, + V is an open, convex, balanced set, so one can set U = U* N X,
and produce (U}) = (V) yielding V* = U* by part (a). But for alln U, CcV,
(Fact 7),s0U, C V, cV Cc U*, soU, C U# Hence U, C U#foralln
yielding V ¢ V* = U* by part (b). Hence Vc X[ +V.

On the other hand, U, C U, for all n, yielding V,, C V, foralln and V C V,
by part (b). Also, X; C U( C Vz C V so X,V C V. But V is open, so if
x € V =10,1)V (Theorem 2.15), writing x = ty, y € V,and ¢t € [0, 1); and
if z € Xy, then

z—i—x:(l—t)-( z)—i—tyef/

1
(I-0
since V is convex. Hence X; + V C V. O
Now for the little facts concerning nets. Suppose (x,) is a net in our LF-space
X, defined on a directed set D. If (y,) is another net defined on D, declare that

(xo) ~ (yo) when lim(y, — x,) = 0. It is not hard to see that this is an equivalence
relation (Exercise 16), but all we need is symmetry, which really is “obvious.”
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13.

14.

15.

16.

If (x4) ~ (o) and limxy, = x, then lim y, = x.

Note that lim(xy, Yo — X¢) = (x,0) in X x X by Proposition A.2 in
Appendix A, so lim y, = x by continuity of addition.

If (xo) ~ (o) and (x,) is a Cauchy net, then (y,) is a Cauchy net.

If U is a convex balanced neighborhood of 0, v s.t. B,y > o = xg—x, €
3U. Also, 3o’ st. B > o = yg —xg € 31U, so that also xg — yg € %U
since U is balanced. 3oy € D s.t. oy > « and o > o’ since D is directed.
If B,y > o, then B,y > « (so that xg — x,, € %U) and B8,y > o (so that
Yg—Xg € %U and x, — y, € %U) so that

1 1 1
y,g—y),:(y,g—x,g)+(x/;—xy)+(xy—yy)e§U+§U+§U=U

by Proposition 3.3(b).

Finally, suppose D’ is another nonempty directed set, for which the members
are denoted by capital letters for reasons that will become clear. D x D’ is now
directed, where (o, U) > (B8,V) when o > B and U > V: given («,U) and
(B.V),dy € Dst.y = aand y > B since D is directed, and IW € D’
st. W = U and W > V since D’ is directed, so that (y, W) > («,U) and
(y, W) > (B, V). If (x4) is a net defined on D, one can define {x,) on D x D’
by setting X,y = X,; this net will be denoted by (x, : D x D’), and the limit
by limpxp’ X4.

If (xo : @ € D) is a net, and D’ is a directed set, and x € X, then

limp xy = x < limpxpr X4 = X.

Pick any U € D’. (Remember, directed sets are nonempty.) If N is a
neighborhood of x, then (8 > @« = xg € N) & ((B.V) > (¢, U) =
xg € N), since xg does not depend on V.

If (x4 : @ € D) is anet, and D’ is a directed set, then (x, : a € D) is a Cauchy
net < (xo : D x D'} is a Cauchy net.

Pick any U € D'.If N is a neighborhood of 0, then (B, y > o = xg—x, €
N) & ((B,V), . W) > (a,U) = xg —x, € N), since x, and x,, do not
depend on V' and W.

Theorem 3.43. LF-spaces are complete.

Proof. Suppose (x,) is a Cauchy net in an LF-space X = |J X, defined on a
directed set D. Let D’ be a neighborhood base at 0 in X consisting of open, convex,
balanced sets. If U,V € D’, declare U > V when U C V (directed downward).
D’ is now a nonempty directed set. If « € D and U € D’, let n(«, U) denote
the smallest 7 for which X, (\(x4 + U) # @. There are such n’s; the n for which
Xo € X, is one. Choose

Ya,u € Xn(a,U) ﬂ(xa + U)
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(ve.v) is now a net defined on D x D’. Furthermore, yo.u € X4 +U = you —Xo €
U, so almost trivially,

limDXD/(ya,U — )Ca) =0.

So: (ya.u) ~ (xo : D x D'). Thus (yey) is a Cauchy net by Facts 16 and 14.

Set (D x D), = {(a,U) € D x D" : n(e, U) < m}. If some (D x D’),, is
cofinalin D x D’, then we are done: {y, ) is now a Cauchy netin X,, on (D xD’),,,
since (o, U) € (D x D)y = You € Xn@vy C Xm. But X,, is complete, as are all
Fréchet spaces, so 3x € X,, for which

lim(pxpr),, Yau = X (limit in X,,),

giving limpxp’),, Ye,u = X (limit in X),

since X,, has the induced topology [Proposition 3.39(a)]. But now
limpxp’ yo.uv = x by Corollary 1.33. Hence limpxp’ X, = x by Fact 13, and
limp x, = x by Fact 15.

The final step is to show that, in fact, some (D x D’), must be cofinal. So
suppose not; suppose no (D x D), is cofinal. Define a sequence (w,, W;) as
follows, constructed so that (a1, W)) < (ap, Wr) < ---:

(D x D’)q is not cofinal, so 3 (o, W)) s.t. (a1, Wp) 4 (B.V) forall (B,V) €
(D x D’);. Given (aj, W) < (a0, W5) < -+ < (ay, W,): (D x D), 41 is not
cofinal,so 3 (B, V) € D x D’ suchthat (y, W) > (8, V) = (y. W) &€ (D x D'),+1.
Choose such a (8, V), and choose (o, +1, Wy 1) so that (o, 41, Wy+1) > (B, V) and
(otn+1, Wag1) > (an, Wy,). Note that in all cases, (y, W) > (., W,) = (p., W) &
(D x D"),.

Now for the trick. (a1, W) < (a2, W2) < ---,s0 W) D W, D ---. Apply the
chain construction to the sequence U, = W, (| X,: D’ consists of open, convex,
balanced sets, so each W, (] X, is open, convex, and balanced in X,,. Furthermore,
W, Xy D War1 (N Xn = Wyt () Xus1) () X, so these sets are suitable for
applying the chain construction, producing (V,), and V. This V is a perfectly
legitimate neighborhood of 0 in X, and our original (x,) was a Cauchy net, so
JastB,y » a = (xg —x,) € V. This x, is in X, so it lies in some X;. Now
A8 € Ds.t. B> aand B > o (same £) since D is directed. The contradiction will
come from where xg must lie.

First, B > a anda > a,s0 xg —x, € V. Now x4 € Xy,50x € xo +V C
Xe+ V.

Next, Xy + V is obtained, by Lemma 3.42(c), as the V= U 17,1, using the sets

X, ifn </

U =
" W, (N X, ifn > ¢
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while Wy and X, + W, are obtained using the sequences (W, () X,;) and

ph_ | Xo ifnst
PTAWeN X, ifn > ¢

by Lemma 3.42(a) and (c). But (7,, C U,f above,so X; +V C Xy + W,.

Finally, B > ay, so (8, Wy) > (ag, W), so (B, W,) & (D x D’),, that is
n(B, W) > €. Hence X, \(xg + Wy) = O, thatis xg & X¢ — Wy = X + W,
since W, is balanced.

Where are we? Reordering:

First: xg € X, + V.
Third: xg & X¢ + W,.
Second: X, +V C X, + W,.

Oops! O

Corollary 3.44. Suppose X = | J X, is an LF-space, and A is a bounded set in X .
Then 3n such that A C X,,.

Proof. Replace A with (A°)., a nonempty, closed, convex, balanced, bounded set
(Proposition 3.19 and Theorem 3.20). This new A is now complete by Theorem 3.43
and Proposition 1.30, so (X4, p4) is a Banach space by Proposition 3.30. But
Vn @ X,()Xais pa-closed in X4 (also by Proposition 3.30), so since X, =
UX, () X4), some X, ()X, has nonempty interior in X, (Baire category),
whence [0, 1)(X, () X4) = X, () X4 is open in X, by Theorem 2.15. An open
subspace .... Again, X, (X4 = X4,sothat A C X4 C X,,. O

We close with a couple of results about LB-spaces. Suppose X = | J X, is an
LB-space, that is an LF-space in which each X, is actually a Banach space. Let p,
denote the norm on X,,. Then the topology induced on X, by X,, 4+ is its original
topology. Letting B, denote the open unit ball in (X,, p,), this all means there exist
r., R, such that

rn(Bn+l an) C B, C RyBy+1.

Without loss of generality, we can assume that 0 < r,, < 1 < R, and we do assume
this.

The sets By, r1 By, rir2Bs, ... are suitable for the chain construction, yielding a
sequence (V,) andaset V = V,.Now foralln : riry---ry,_1By CV, (n = 1v;
n > 1 from Fact 1). But this means that for all x € X,,,

Vt>0:x€trnr--rn1B,=xetV,, or
{t>0:x€triry---ry—1B,} C{t >0:x etV,}, sothat

p"l’Z""'nl By 2 an .
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Butforallr > 0and x € X,;:

{t>0:txerB,}={t>0:1r"'x € B,}, so
Pra,(x) = pr, (r~'x) = 17 pu(x)
since p, = pp, is a norm. Hence

—1
(rira-+=ra—1)" pn = pv,, or

Pn 2 rer"'rn—lpV,,-

But V (X, = V, (Fact 12),s0 py|, = py,. We now have that
Pn(x) > riry - ry— py(x) forx € X,.

But By € RiB, C RiRBs C --- C RiR,---R,1B,, and r1B, C B, C
RiB, C RiRyB; C --- C R{Ry--- R,—1By; in general, each riry---1x—1Bx C
RiR>---R,—1B, for k < n. (This is why we assumed that r; < 1 < R;.) Hence
each Vi C RiRy---R,—1 B, since R{R,---R,—1 B, is convex, using Fact 5 and
induction on k. In particular, V,, C R{R,--- R,—1 B,, so as above, for x € X,

P, (X) = PR RoRy—y B, (X) = (RiR2 -+ Ry)) ™' pis, (%), or
RiR; -+ Ry—1py(x) = pa(x).
What all this means is that py | . 1s norm-equivalent to the norm p, on X,. We
have proved:

Proposition 3.45. Suppose X = | J X,, is an LB-space. Then there is a single norm
|| e || on X which, when restricted to each X,, gives its Banach space structure. That
is, one may assume without loss of generality that each inclusion X, — X,y is an
isometry.

Warning: X definitely does not have the norm topology. (It is complete and first
category.)

The final result would be slightly easier to prove using material from the next
chapter, but it is not difficult here. Consider the result transitional.

Proposition 3.46. The strong dual of an LB-space is a Fréchet space.

Proof. Suppose X = | X, is an LB-space. Assume we have one norm ||e|| defining
the various Banach space structures on the spaces X, (Proposition 3.45). Let B,
denote the unit ball in X,,. Set

B = {27%(B,)° :n,k e N}.
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This 4 is countable, closed under multiplication by %, and

277 (B)® (275 (Bw)° D 27 ™ U0 (B,

so A defines a locally convex topology on X *. If A is bounded in X, then A C X,
for some 1 (Corollary 3.44), so A C 2¥ B, for some k, giving A° D 27%(B,,)°. That
is, each strong neighborhood of 0 contains a member of Z. But each member of
A is a strong neighborhood of 0, so Z is a base at 0 for the strong topology, and
X* is first countable. Given the definitions, it remains to show that X * is complete.
Sequentially complete will do, by Theorem 1.34.

Suppose ( f,) is a Cauchy sequence in X*. Then m,n > N = f, — f, €
277 (By)° means | f,,(x) — fn(x)| <27/ for x € By, thatis

||fm|Xk _f”|Xk”0P =< 2_j-

Hence ( fin \ Xk> is a Cauchy sequence in X;*, so it converges uniformly on bounded
sets in Xj. Letting k float, this gives a pointwise limit f on all of X ; moreover, f ‘ X

is the operator norm limit in X%, so f | X is continuous. Hence f is continuous by
Corollary 3.41. O

In Sect. 4.1, it will be seen that any LF-space satisfies a condition which, in
Sect. 4.3, will force its dual space to be complete. We will get to that shortly.

Exercises

1. Let X denote the Banach space of bounded real sequences on N, that is X =
£%°. Set p({x,)) = limsup x,. Show that p is a gauge.

2. Suppose X is a normed space, with norm || e || and open unit ball B. Suppose
C is convex, having 0 as an internal point.

(a) Show that pc(x) < ||x| forall x if and only if B C C.
(b) Show that p¢(x) > | x|| forall x if and only if C C B~.

3. Suppose X is a locally convex space, and B is a nonempty closed, convex,
balanced subset of X. Suppose D is weak-* dense in B°. Show that D, = B.

4. Suppose X is a locally convex space. Show that X * is weak-" dense in X’.

5. Suppose X is a locally convex space. Let X, denote X with the weak topology.
Show that (X,,)* = X™* without using Lemma 3.22, but instead by giving two
elementary arguments showing that (X,,)* C X* and (X,,)* D X*.

6. Suppose X is an infinite-dimensional Hausdorff locally convex space.

(a) Show that the weak-* topology on X * is not given by a norm.
(b) Show that if the algebraic dimension of X is uncountable, then the weak-*
topology on X * is not first countable, and hence is not metrizable.
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Suppose X is a locally convex space, and .7* is a locally convex topology on
X* which is locally weak-*-closed. Suppose U is a .7 *-neighborhood of 0, so
that there exists a weak-* closed, 7 *-neighborhood V' of 0 such that V C U.
Show that there is a strong neighborhood D of 0 such that D C V. Use this
to show that the strong topology on X™* is finer than .7*. Hint: V contains
a convex, balanced 7 *-neighborhood W of 0. Look at W,. It may help to
show that the set of all weak-* closed, convex, balanced, absorbent sets in X *
constitutes a base at 0 for the strong topology.

Suppose X is a locally convex space over F = R or C. X* = Z.(X,F),
of course. Show that the strong topology on X* is the topology of bounded
convergence on .Z, (X, F).

Suppose X is a vector space over R or C, and p is a seminorm on X.

(a) Setker(p) = {x € X : p(x) = 0}. Show that ker(p) is a subspace of X.

(b) Show that p induces a norm on X/ ker(p), and show that the associated
norm topology on X/ ker(p) is the quotient topology.

(c) Suppose Y is a locally convex space, and T : ¥ — X is a linear map.
Show that T is continuous if and only if 7 o T is continuous, where 7 :
X — X/ ker(p) is the natural projection.

Suppose %, and .% are two families of seminorms on a vector space X
over R or C, and suppose that .7, C .%;. Let .7 and .7’ denote the locally
convex topologies on X produced by .%, and .% using Definition 3.32 and the
discussion following Corollary 3.34. Show that .7 C .7, with equality if and
only if every member of .7 is .7 -continuous.

Suppose m is Lebesgue measure on [0, 1]. Suppose 1 < p < g < oo. Let
A denote the closed unit ball in L?(m). Show that A4 is closed in L?(m), in
which space (L?(m))4 = L9(m) and p4([f]) = | fll4- (Notation is from
Proposition 3.30.)

Suppose X is a locally convex space, and p is a seminormon X. Set A = {x €
X : p(x) < 1}. Show that p = py.

Suppose X is a locally convex space, and Y is a subspace. Suppose p is a
continuous seminorm on Y . Show that p extends continuously to X . Hint: Look
at the link construction in Sect. 3.8. Use Exercise 12.

Suppose X = |J X, is an LF-space. Show that 3 a countable sequence of
seminorms on X, p; < p» < --- such that, for all n, {p1|Xn,p2‘Xn, ...} give
the Fréchet topology on X,,. Hint: Use Exercises 10, 12, and 13, not necessarily
in that order.

Suppose X = | J X, is an LF-space and A C X. Show that A is bounded in
X if, and only if, 3n such that A C X, and A is bounded as a subset of the
Fréchet space X,.

(See the discussion preceding Theorem 3.43). Suppose G is a topological group
with identity 1, and D is a directed set. If (x,) and (y,) are nets defined on D,
declare that (x,) ~ (yo) if limx,'y, = 1. Show that ~ is an equivalence
relation.
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17. Suppose X is a locally convex space, and B is a neighborhood of 0 in X.
Suppose D is a countable dense subset of B. If x € D and [ is an open interval
with rational endpoints, set N(x,I) ={f € B°: f(x) € I}.

(a) Show that the set of all such N(x, /) forms a (countable) subbase for a
Hausdorff topology on B° which coincides with the weak-* topology on B°.
Hint: First show that this topology is coarser than the weak-* topology, then
use the Banach—Alaoglu theorem.

(b) Show that B°, with the weak-* topology, is metrizable. (See Appendix A,
Corollary A.5, for the Urysohn metrization theorem.)

18. (This uses some ordinal arithmetic.) Let w; denote the smallest uncountable
ordinal, and let ; denote counting measure on 2 (w,). Set X = L?(u). If
a<ow,setXy,={feX:f(B)=0if 8 >a}.

(a) Show that X = | X,.

(b) By analogy with the definition of an LF-space, set 8y = {B C X : B is
convex, and B N X, is a neighborhood of 0 in X, }. Show that %, defines a
locally convex topology on X.

(c¢) Suppose f : w; — (0,1] is a nonincreasing function. Show that f is
eventually constant.

(d) Using (c), show that the topology produced in part (b) is the L2-topology on
X that you started with (!). Suggestion: given B € %, define f(«) to be
the largest r < 1 such that the open ball of radius r in X, is contained in
B N X,. (Why is there a largest such r?)

19. Suppose X is a Hausdorff locally convex space, and suppose (x,) is a Cauchy
net in X that has a weak cluster point x. Show that limx, = x (original
topology).

Hint: Examine the completeness proof in Proposition 3.30, and use the fact that
the original topology is locally weakly closed.

20. (Mazur) Suppose X is a metrizable locally convex space, (x,) is a sequence in
X, and x is a cluster point of (x,) in the weak topology. Show that there exists
a sequence (y,) such that y, — x in the original topology, and each

Vi € cON{Xy, Xpt1, X425+ - -}

Hint: Apply Theorem 3.29 to the original closure of con{x,, X,+1, Xy+2, - - -}-
21. Suppose (X, A, u) is a measure space, | < p < oo, (f,) is a sequence in
L?(u), and f is a cluster point of ( f,,) in the weak topology. Finally, suppose
f» — g ae. Show that f = g a.e. Hint: Use Exercise 20.
22. Suppose (X, A, 1) is a measure space, | < p < oo, and ( f,) is a sequence
in L?(u) such that || f,||, < M for all n. (M = a fixed constant.) Finally,
suppose f, — g a.e. Show that g € L7 (), |gll, < M, and f, — g weakly.

Hint: Use Exercise 21, the Banach—Alaoglu theorem, and Proposition A.6 from
Appendix A.
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Remark: The fact that ||g|| , < M can be derived using integration theory alone.
In fact, the whole problem can be done using integration theory, although if u
is infinite, the argument is rather messy.

In a sense, the proof of Corollary 3.44 was much more “high powered” than
it needed to be: prove Corollary 3.44 without using either the completeness
of LF-spaces or the X4 construction by using the following device: if A is not
contained in any X, then choose f,, € X* for which f, \ X, = Obut f,(x,) =n
for some x, € A. Look at X' f,,.

(OId business) Suppose X is a first countable Hausdorff locally convex space.
Show that X has a countable neighborhood base &4 = {Bi, B,, B3,...} at
0 where each B; is convex and balanced, and 2B;1; C B; for each j.
Furthermore, show that all the sets B; may be assumed to be closed, or all the
sets B; may be assumed to be open. (Use Theorem 1.13 plus Proposition 3.1,
or Corollary 3.34, your choice.)



Chapter 4
The Classics

4.1 Three Special Properties

There are, of course, a large number of properties that a topological vector space
may have. One has been assumed since the last chapter started: local convexity.
Another will be assumed (mostly) from here on: the Hausdorff condition. There
are plenty of others, but three stand out for their utility concerning the basic (well,
nearly basic) properties of Hausdorff locally convex spaces. In particular, they apply
directly to the “classic” theorems that are the subject of this chapter.

All three have the following form: Any convex balanced set that has the property
that [insert special conditions] is a neighborhood of 0. Before stating the conditions,
recall that a convex balanced set A absorbs aset B if B C c A for some scalar c. A4 is
absorbent if it absorbs points. As before, since A4 is balanced: B C cA = B C dA
whenever |d| > |c].

Definition 4.1. Suppose X is a Hausdorff locally convex space.

(i) A barrel in X is a subset that is closed, convex, balanced, and absorbent.
(i1) X is barreled if each barrel in X is a neighborhood of 0.
(iii) X is infrabarreled if each barrel in X that absorbs all bounded sets is a
neighborhood of 0.
(iv) X is bornological if each convex, balanced set in X that absorbs all bounded
sets is a neighborhood of 0.

Clearly:
barreled = infrabarreled <= bornological
“Barrelled” is the most important concept, although “bornological” gets the

fastest start. To borrow from Aesop, “barreled” is the tortoise and “bornological”
is the hare—and “infrabarreled” is the gopher, popping up from time to time.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 95
DOI 10.1007/978-3-319-02045-7_4, © Springer International Publishing Switzerland 2014
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We start with three propositions. The first two are pretty obvious considerations,
but the third is subtle.

Proposition 4.2. Suppose X is a Hausdorff locally convex space, and Y is a closed
subspace.

(a) If X is barreled, then X /Y is barreled.
(b) If X is infrabarreled, then X /Y is infrabarreled.
(c) If X is bornological, then X /Y is bornological.

Proof. As usual, 7 : X — X/Y is the quotient map. Suppose B is a convex,
balanced subset of X/Y; then 7~!(B) is also convex and balanced. If ¢ > 0 and
Xx+Y CcB,then x € 7' (cB) = ¢ '(B) since 7' (B) is a union of cosets
of Y. In particular, if B absorbs all bounded sets, and A4 is bounded in X, then B
absorbs (A), so 7~ !(B) absorbs A. Finally, if B is closed, then 7~ (B) is closed.
So:

(a) If B is a barrel, then so is 7~ !(B).

(b) If B is a barrel that absorbs all bounded sets, then so is 77! (B).

(c) If B is convex and balanced and absorbs all bounded sets, then the same holds
for 7~1(B).

The point is that, whichever case we are in, 77! (B) is a neighborhood of 0, so
B = m(7~!(B)) is a neighborhood of 0 since 7 is open. [Proposition 1.26(b)]. O

By the way, there exist barreled spaces with subspaces that are not even
infrabarreled; see Kothe [22] for a discussion.

Proposition 4.3. Suppose X and Y are Hausdorff locally convex spaces.

(a) If X and Y are barreled, then X x Y is barreled.
(b) If X and Y are infrabarreled, then X X Y is infrabarreled.
(c) If X and Y are bornological, then X x Y is bornological.

Proof. Firstof all, if A is bounded in X, then any neighborhood of 0 in X x Y of the
form U x V absorbs A x {0} simply because U absorbs A4, so A x {0} is bounded.
Suppose B is a convex, balanced subset of X x Y. The slice B N (X x {0}) can be
written as By x{0} = BN (X x{0}); similarly, write {0} x By = BN({0}xY). Since
the projections are homeomorphisms on slices, B closed = By and By closed.
Finally, B absorbs A x {0} if and only if By absorbs A. So:

(a) If B is a barrel, then so are By and By.

(b) If B is a barrel that absorbs all bounded sets, then so are By and By.

(c) If B is a convex, balanced set that absorbs all bounded sets, then so are By
and By.

The point is that, whichever case we are in, By and By are neighborhoods of 0.
Butif x € By and y € By, then (3x,4y) = 1(x,0) 4+ 1(0,y) € B since B is
convex, so B D %(BX x By), a neighborhood of 0. O
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By the way, this result generalizes considerably, but that requires material from
the next section and from the next chapter.

Now for the subtle point. When working over C, the “balanced” condition
becomes considerably more restrictive. In particular, the sets required to be
neighborhoods of 0 in Definition 4.1 expand when one considers a C-vector space
to be an R-vector space. However, the properties are not, in fact, lost.

Proposition 4.4. Suppose X is a Hausdorff locally convex space over C. Let X |]R
denote X considered as a locally convex space over R.

(a) If X is barreled, then X |]R is barreled.
(b) If X is infrabarreled, then X \R is infrabarreled.
(c) If X is bornological, then X |]R is bornological.

Proof. The fundamentals here appear in Proposition 2.19. Suppose B is a convex,
R-balanced subset of X, that is, a convex, balanced subset of X R Form

C = ﬂ ¢’ B.
0<0<2m

This C is convex and C-balanced; it is also closed if B is closed. Taking .# to be
either the class of singletons or the class of bounded sets:

(a) If Bisabarrelin X R then C is a barrel in X .

(b) If Bisabarrel in X ‘R that absorbs all bounded sets, then C is a barrel in X that
absorbs all bounded sets.

(c) If B is convex, balanced set in X ‘R that absorbs all bounded sets, then C is a
convex, balanced set in X that absorbs all bounded sets.

The point is that, whichever case we are in, C is a neighborhoodof 0. But C C B.
O

Now for some particular cases.

Theorem 4.5. Suppose X is a Hausdorff locally convex space of the second
category. Then X is barreled. In particular, Fréchet spaces are barreled.

Proof. Suppose that X is a Hausdorff locally convex space of the second category,
and B isabarrelin X. Since0 <r <s = rB =s-(r/s)B C sB (B is balanced),

o0
X = UnB
n=1

since B is absorbent. Hence int(nB) # @ for some n (second category). But
int(nB) = n - int(B) since multiplication by n is a homeomorphism. Hence B
is a neighborhood of 0 (Theorem 2.15). O
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Corollary 4.6. LF-spaces are barreled.

Proof. Suppose that X = | J X, is an LF-space, and B is a barrel in X. Then for all
n, BN X, is abarrel in X, : It is closed by Proposition 3.39(a), and all else is trivial.
By the above, B N X, is a neighborhood of 0 in X,,, so B is, by definition, part of
the original neighborhood base at O for X . O

A space need not be complete to be barreled; see Exercises 26-30.

Corollary 4.7 (Absorption Principle). Suppose X is a Hausdorff locally convex
space, and suppose A and B are two closed, convex, balanced subsets of X. Assume
that A is bounded and sequentially complete. Then, if B absorbs every point in A,
then B absorbs A, thatis, A C rB for some r > 0.

Proof. If A = @, then A C B and we are done, so suppose A is nonempty. As in
Proposition 3.30, form the space (X4, p4). Then (X4, p4) is a Banach space since
A is sequentially complete, and B N X 4 is a barrel in X 4. (B absorbs every point of
A, so it absorbs every point of every 74, r € R.) Hence B N X4 is a neighborhood
of 0in X4, so B N X4 absorbs A. Hence B absorbs A. O

Corollary 4.8. Suppose X is a Hausdorff locally convex space. If X is infrabar-
reled and sequentially complete, then X is barreled.

Proof. Suppose X is an infrabarreled Hausdorff locally convex space that is also
sequentially complete, and suppose B is a barrel in X and A is a bounded subset
of X. Then (A°), is closed, convex, balanced, and bounded; it is also sequentially
complete: If (x,) is a Cauchy sequence in (A°)., then x, — x (there exists x € X)
since X is sequentially complete, while x € (A°), since (A°), is closed. Thus, B
absorbs (A°)., thatis, A C (A°). C ¢B, for some ¢ > 0. Since A was arbitrary, B
absorbs all bounded sets, and so is a neighborhood of 0 since X is infrabarreled. 0O

Corollary 4.9. Infrabarreled spaces are Mackey spaces.

Proof. Suppose X is an infrabarreled Hausdorff locally convex space. If D =
(Do)° is weak-* compact in X *, then as a subset of X* with the weak-* topology:
D is nonempty, bounded, closed, convex, balanced, and complete (Corollary 1.32),
hence D is sequentially complete. If A is bounded in X, then A° is a barrel in
X* which must now absorb D by the absorption principle. Hence D, absorbs A
[Theorem 3.20(e)]. Since A is arbitrary and X is infrabarreled, D, is an original
neighborhood of 0. Since D was arbitrary, the Mackey topology cannot be strictly
finer than the original topology. O

Now for “bornological,” a subject that will reappear in Sect. 4.3, then largely
disappear. The bornological condition does not require completeness; far from it.

Proposition 4.10. Suppose X is a Hausdorff locally convex space. If X is first
countable, then X is bornological.

Proof. Suppose X is a first countable Hausdorff locally convex space. Choose a
countable neighborhood base Vi, V,,... at O such that V; D V, D V3 D .-
(Theorem 1.13 provides more, but this is all we need.) Suppose B is a convex,
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balanced subset of X . Rather than assuming that B absorbs all bounded sets and then
proving that B is a neighborhood of 0, we shall assume that B is not a neighborhood
of 0 and construct a bounded (in fact, compact) set that B does not absorb.

Assume B is not a neighborhood of 0. Then for all n, %Vn ¢ B,soV, ¢ nB.
Choose x, € V, —nB.Since x, € V,and V; DV, D -++: x, — 0,50 {x,} {0} is
compact, hence bounded. But x,, & nB says that B cannot absorb {x,} | J{0}. O

Corollary 4.11. Normed spaces, Fréchet spaces, and LF-spaces are bornological.

Proof. Normed spaces and Fréchet spaces are first countable. As for LF-spaces,
suppose that X = | X, is an LF-space, and B is a balanced, convex subset of X
that absorbs all bounded sets. If 4 is bounded in X, then each continuous linear
functional on X restricts to a continuous linear functional on X, (Proposition 3.39)
and so is bounded on A. Hence A is bounded in X by Corollary 3.31, so B
absorbs A. That is, B N X, is a convex balanced subset of X, that absorbs A. Since
A was arbitrary and X, is bornological, B N X, is a neighborhood of 0 in X,,. Since
n is arbitrary, B is, by definition, a member of the original neighborhood base at 0
defining the LF-topology of X. O

The preceding proof for LF-spaces works because the LF-topology base %, was
defined without assuming “B N X, is open in X,,” in Sect. 3.8.
Now for the “point” of assuming the bornological condition.

Theorem 4.12. Suppose X and Y are Hausdorff locally convex spaces, and T :
X — Y is a linear transformation. Consider the following three statements:

(i) T is continuous.
(ii) If x, > 0in X, then T(x,) > 0inY.
(iii) T is bounded, that is T (A) is bounded in Y whenever A is bounded in X .

Then (i) = (ii) = (iii) always, and (iii) = (i) if X is bornological.

Proof. (i) = (ii), since continuity = sequential continuity.

Assume (ii): If A is bounded but 7(A) is not bounded in Y, choose a
neighborhood V of 0 in Y that does not absorb 7'(A). choose T (x,) € T(A) —nV,
X, € A. Then %xn — 0 by Proposition 2.7. But T’ (%xn) gV,soT (%xn) 40,
violating (ii).

Assume (iii), with X bornological. Suppose V' is a convex, balanced neighbor-
hood of 0 in Y. If A is bounded in X, then V absorbs T(A4), that is T(4) C rV,
so A C rT~Y(V). Letting A vary, T~!(V) is a convex, balanced set that absorbs
all bounded sets, so 7~!(V) is a neighborhood of 0 in X. Hence T is continuous
[Proposition 1.26(a)]. O

By the way, the implication (iii) = (i) characterizes the bornological condition;
see Exercise 18.

The bornological condition will now take a short rest, then reappear in a
fundamental way in Sect.4.3. After Sect.4.3, it will largely disappear, and the
barreled condition will make its long-term importance quite evident.
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4.2 Uniform Boundedness

For locally convex spaces, as for Banach spaces, the notion of “uniform bound-
edness” concerns itself with sets of continuous linear transformations. As such,
the “right” way to look at such sets is to place them in the appropriate space of
continuous linear transformations, then formulate the conditions using functional
analysis on that space. However, in practice, the conditions one typically verifies
concern boundedness of sets in the range space. These are directly related. The next
proposition (and the lemma preceding it) connect these ideas. This proposition is
not obvious, although it is easy to prove.

Asin Sect. 3.6, if X and Y are locally convex spaces, andif A C X andU C Y;

N(A,U) ={T € Z(X,Y): T(A) C U}.

As always, .Z.(X, Y) is the space of continuous linear transformations from X to Y.

Lemma 4.13. Suppose X and Y are locally convex spaces, and c is a nonzero
scalar. Then forall A C X andU C Y:

c¢N(A,U) = N(A,cU) = N(c"'A4,U).

Proof. T € N(A,cU) & T(A)CcU & c7'T(A) CU. But
cT'TA)CcU & T 'AcU<«&TeNc'4,0) and
c'TA)cU & ¢ 'TeNAU)& TecNA,U). O

Proposition 4.14. Suppose X and Y are locally convex spaces, and F C
Z(X.Y).

(a) F is bounded in the topology of pointwise convergence if, and only if, for all
x € X theset{T(x):T € .F}is boundedinY .

(b) F is bounded in the topology of bounded convergence if, and only if, for all
bounded sets A C X the set

U T(A) is boundedin Y.

TeF

Proof. The underlying idea is the same for both parts:

F CcN(AU) & F C N(A,cU)

VT eF:TA)CcU & | TM)Ccl.
TeZ
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Part (b) is now direct:

Z is bounded in the topology of bounded convergence.

< for all bounded A C X and convex balanced neighborhood U of 0 in
Y: there exists ¢ > 0s.t. % C ¢N(A,U)

< for all bounded A C X and convex balanced neighborhood U of 0 in

Y: there existsc > 0s.t. |J T(A) CcU
TeF

& forall bounded A C X : |J T(A)isboundedin Y.
TeF

As for part (a), the same argument shows that .% is bounded for the topology of
pointwise convergence if and only if for all finite A C X:

|J T(4) is bounded in Y.

TeZF
But
| 7)) ={T(x): T e F.xedy= | JIT(x): T e 7},
TeZF X€EA
which is bounded if and only if each {T'(x) : T € .#} is bounded, since A is finite
[Proposition 2.7(c)]. O

Two-thirds of the next definition will be concerned with giving a shorter phrasing
for the conditions appearing above. The other condition is new, and is very important
in practice.

Definition 4.15. Suppose X and Y are locally convex spaces, and % C
Z(X.Y).

(i) Z is equicontinuous if, for every neighborhood V of 0 in Y, there exists a
neighborhood U of 0 in X such that T(U) C V forall T C .%.
(ii) % is bounded for bounded convergence if .% is bounded in the topology of
bounded convergence.
(iii) % is bounded for pointwise convergence if .% is bounded in the topology of
pointwise convergence.

Of course, Proposition 4.14 gives equivalent conditions for (ii) and (iii), and there
is a nearly obvious equivalent condition for (i): If V' is a neighborhood of 0 in Y,
and U C X, then

VT eZ:TU)CV & VTeZ:UCT (V)

sUc(\T7'0).
TeF
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Hence

Z is equicontinuous < () T~!(V) is a neighborhood of 0 in X

Tz

TeZ
whenever V is a neighborhood of O in Y.

This formulation is the one usually verified in practice.

We can now give the main result of this section. It is more general than the
classical Banach—Steinhaus theorem, but there seems to be some disagreement in the
literature as to exactly what result should be called the “Banach—Steinhaus theorem”
and what should be called the “uniform boundedness theorem.” We use both,
although the phrase “Equicontinuity theorem” is just as descriptive. Technically,
the term “uniform boundedness theorem” applies best to part (c), while “Banach—
Steinhaus theorem” applies best to part (d).

Theorem 4.16 (Banach-Steinhaus/Uniform Boundedness Theorem). Suppose
X and Y are Hausdorff locally convex spaces, and F C £.(X,Y). Consider the
following three conditions on % :

(i) F is equicontinuous.
(ii) F is bounded for bounded convergence.
(iii) .7 is bounded for pointwise convergence.

Then:

(a) (i) = (ii) = (iii) always.

(b) If X is infrabarreled, then (ii) = (i).

(c) If X is sequentially complete, then (iii) = (ii).
(d) If X is barreled, then (i)—(iii) are all equivalent.

Proof. (a) (ii) = (iii) is trivial, since the topology of bounded convergence is finer
than the topology of pointwise convergence. To prove that (i) = (ii), suppose
Z is equicontinuous, A is bounded in X, and U is an open neighborhood of 0
in Y. Choose a neighborhood V of 0 in X so that 7(V) C U forall T € Z.
Choose ¢ > 0sothat A C ¢V.Thenc™'4 C V, so that T(c™'4) C U for all
T € Z,thatis.F C N(c7'A,U) = ¢N(A,U). Thatis, N(A, U) absorbs .%.
(d) Assume (iii), and suppose % is bounded for pointwise convergence and
X is barreled. Let U be a barrel neighborhood of 0 in Y. Then

B=(\T7'0)

TeF

is closed, convex, and balanced. If x € X, then there is a ¢ > 0 so that {7 (x) :
T € #} C cU, thatis x € T ' (cU) = ¢T7'(U) for all T € .%. Hence
x € c¢B. That is, letting x vary, B is absorbent, and so is a barrel. Since X is
barreled, B is a neighborhood of 0.

(b) Assume (ii), and suppose .# is bounded for bounded convergence and X is
infrabarreled. Let U be a barrel neighborhood of 0 in Y. Then as above,
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B=(\T7'0)

TeF

is a barrel since .# is bounded for pointwise convergence. Since we are
assuming X is infrabarreled, as above, we need only show that B absorbs all
bounded sets in X .

Suppose A is boundedin X. Then thereisac > 0sothat.# C ¢cN(A4,U) =
N(c™'4,U), so

VT e Z :T(c'A) CcUthatisVT € Z :c'Ac T (U).

Hence c™'A4 C B, sothat A C ¢B.

(c) Assume (iii), and suppose .# is bounded for pointwise convergence and X is
sequentially complete. Suppose U is a barrel neighborhood of 0 in Y, and as
above set

B=(\T'U).

TeZ

As in the proof of part (d), B is a barrel. If A is bounded in X, then B
absorbs each point of (4°)., so B absorbs (A°). by the absorption principle
(Corollary 4.7). Hence B absorbs A. But if A C c¢B, then ¢ 'A4 C B, so
reversing the argument above:

VT eZ :c'AcCT ' (U),thatisVT € Z : T(c"'4) c U.

That is, # C N(c '4,U) = ¢N(A,U), so (letting A and U vary) each
N(A, U) absorbs .%. Hence .7 is bounded for bounded convergence.
O

The Banach—Steinhaus theorem has many applications, but one stands out so
much that nearly every book on functional analysis includes it: bilinear forms. If X,
Y, and Z are locally convex spaces, thenamap f : X x Y — Z is called bilinear
if: forall x € X, f(x,?): Y — Zislinearand forally € Y, f(?,y) : X - Z
is linear. Typically, these two maps are easily checked to be continuous (i.e., f
is separately continuous), but what one really wants is joint continuity, or at least
something approaching joint continuity.

Proposition 4.17. Suppose X, Y, and Z are Hausdor{f locally convex spaces, and
f 1 X XY — Z is a separately continuous bilinear map. Suppose A is bounded in
X, and Y is barreled. Then f is jointly continuous on A x Y.

Proof. Set % = {f(a,?) 1 a € A} C ZL.(Y,Z).If y € Y, then f(2,y) is
continuous from X to Z, so it sends the bounded set A to a bounded subset of Z.
Thatis, { f(a,y) : a € A}isboundedin Z whenever y € Y. By Proposition4.14(a),
this just says that . is bounded for pointwise convergence, so .% is equicontinuous
by Theorem 4.16(d).
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Suppose a net (x4, yo)) convergesto (x, y) in AxY, and suppose W is a convex,
balanced neighborhood of 0 in Z. Then there is a neighborhood V' of 0 in Y such
that f(a,V) C %W for all a € A (equicontinuity). Also, there is a neighborhood U
of 0 in X such that (U, y) C %W since f(?, y) is continuous. Finally, there is an
a suchthat 8 > o = (xg,yg) € (x,y) + U x V. From this, for 8 > a:

f(xg,yp) — f(x.y) = f(xg.y8) — f(xp.¥) + f(xp.y) — f(x,)
= f(xg,yp—y) + flxp—x,¥)

1 1
S W 4 =W.
2 + 2

since xg € A since
andyg—yeV xp—xeU

Thatis, { f(xy, Ye)) = f(x,y). Hence f is continuous [Proposition 1.3(c)]. O

Corollary 4.18. Suppose X, Y, and Z are Hausdorff locally convex spaces, and
f X xY — Z is a separately continuous bilinear map. Suppose X is first
countable and Y is barreled. Then f is jointly continuous provided either X is
normed or Y is a Fréchet space.

Proof. Case 1: X is normed. Let A, be the open ball in X of radius n. Then f is
continuous on A, X Y. Thus if W is openin Z, then f~'(W)N (W, xY)
is relatively openin A, x Y since A4, is bounded in X. But A, X Y is open
inX xY,s0o f7'(W)N (A4, xY)isopenin X x Y. Hence

STy = U vy n (4, x )

n=1

isopenin X x Y.

Case 2: Y is a Fréchet space. Then X x Y is first countable, so sequences suffice
to check continuity. If (x,, y,) — (x,y)in X xY, then x, — x in X and
yp = yinY,s0 A = {x} U {x, : n € N} is compact, hence bounded, in
X. Since f is continuouson A X Y, f(x,, y») = f(x,y). o

There is one situation where a separately continuous bilinear map arises
naturally, and it illustrates the limits to generalizing Corollary 4.18: the evaluation
map. Suppose Y is a Hausdorff locally convex space, and X = Y*, its strong dual.

Let Z = F be the base field, and definee : Y* x Y — Fbye(f,y) = f(»).

e(f,?) = f, which is continuous; while e(?, y) has values of modulus < & on

{e71y}°, and so is also continuous. That is, the evaluation map is always separately

continuous. However, it is not jointly continuous unless Y can be normed; see

Exercise 5. If Y is an LB-space, then Y* is a Fréchet space (Proposition 3.46),

and so is first countable, while Y itself is barreled (Corollary 4.6). This shows

that something beyond “X is first countable and Y is barreled” is necessary for

Corollary 4.18. Incidentally, it also shows that the strong dual of a Fréchet space Y
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cannot be another Fréchet space unless Y can actually be normed. It cannot even
be first countable ... but (thanks to results discussed in the next section) the strong
dual of a Fréchet space is always complete.

4.3 Completeness

When working with Banach spaces, or even normed spaces, %, (X, Y) is complete
whenever Y is complete. However, other things also happen automatically. For
example, bounded linear transformations are always continuous when working with
normed spaces, a result that fails when X is locally convex and not bornological.
These two facts are interrelated. A digression is in order, concerning the space
%, (X,Y) of bounded linear transformations from X to Y.

Technically, the first point concerns the vector space of all linear transformations,
but it is easily deduced from first principles (plus one result from Appendix A).

Proposition 4.19. Suppose X and Y are Hausdorff topological vector spaces, and
(Ty) is a net consisting of (not necessarily continuous) linear transformations from
X to Y. Suppose that for all x € X, lim T, (x) exists: Call that limit T (x). Then T
is a linear transformation.

Proof. If x € X and c is in the base field, then
T(cx) =1limTy(cx) =limcTy(x) = clim T, (x) = cT(x)

since multiplication by c¢ is continuous. Similarly, if x,y € X, then Ty(x) —
T(x) and T,(y) — T(y)in Y, so (Ty(x),To(y)) — (T(x),T(y))inY xY
(Proposition A.2). Hence T,(x) + To(y) — T'(x) + T(y) since addition is jointly
continuous. Thus,

T(x+y)=lmT,(x +y) =1limTy(x) + T,(y) = T(x) + T(y). -

Now back to %,(X,Y). If A is bounded in X and U is a neighborhood of 0 in
Y, set

Ny(A,U) = {T € %(X,Y): T(A) C UL

The subscript “b” is included to emphasize the fact that we are dealing with
Zp(X,Y) and not .Z, (X, Y). Note that if T(A) is bounded, say T(A) C cU, then
T € Np(A,cU) = cNp(A, U) [Lemma 4.13, which is a computation, and applies to
Np(A,U) as well as N(A, U)]. That is, the sets Nj(A, U) are absorbent, and (as in
Sect. 3.6) form a neighborhood base of 0 for the topology of bounded convergence
on % (X,Y).
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Theorem 4.20. Suppose X and Y are Hausdorff locally convex spaces,
and suppose Y is complete. Then in the topology of bounded convergence,
L (X,Y), the space of bounded linear transformations from X to Y, is complete.

Proof. Suppose (T,) is a Cauchy net in %, (X, Y). If x € X, then
To —Tg € Ny({x},U) = Tu(x) = Tg(x) e U

which happens when « and § are both “large,” so for all x € X (T, (x)) is a Cauchy
netin Y. Hence 7T'(x) = lim Ty (x) exists for all x € X since Y is complete. This T’
is linear by Proposition 4.19; it remains to show that 7" is bounded and 7, — T in
%, (X,Y). These are done simultaneously.

Suppose A is bounded in X and U is a neighborhood of 0 in Y. Choose a barrel
neighborhood V' of 0 in Y such that V' C U. there exists « s.t. 8,y > o =
Tg — T, € Np(A,V). Thus, if x € A, then B,y > a = Tg(x) —T)(x) € V. But
T,(x) — T(x); taking the limit in y (Proposition 1.4: {y : y > a} is cofinal) gives
Tg(x) —T(x) € V since V is closed, when B > o and x € A.

This has two consequences. First, setting 8 = « and eventually letting A and U
float, T,(x) — T(x) € V,so T(x) — T,(x) € V (V is balanced), and there exists
¢ > O such that 7,(A) C c¢V. Hence for all x € A:

T(x)=T(x) = To(x) + Tu(x) €V +cV =(c+ 1)V C (c+ DU

[Proposition 3.3(b)]. That is, T(A) C (¢ + 1)U. With U varying: T'(A) is bounded.
With A varying: T is bounded.

Now that we know that 7" is bounded, Tg(x) —7'(x) € V when 8 > a and x € A
means that (Tg —T)(A) C V when B > a, thatis Tg —T € Np(A, V) C Np(A,U)
when B > «. This means that T, — T in the topology of bounded convergence. O

Corollary 4.21. Suppose X and Y are Hausdorff locally convex spaces, and
suppose X is bornological and Y is complete. Then £.(X,Y) is complete in the
topology of bounded convergence.

Proof. Since X is bornological, Z.(X,Y) = 4,(X,Y) (Theorem 4.12) and
%, (X,Y) is complete (Theorem 4.20). O

Corollary 4.22. The strong dual of a Hausdorff, bornological, locally convex space
is complete.

Proof. The base field is complete. O

By the way, there are nonbornological spaces with duals that are complete, but
more discussion of duality is needed for this.

If “completeness” alone were all we ever needed, we would now be done with
this section. However, there has been no discussion here of sequential completeness.
It turns out that sequential completeness is not the “right” concept here, although
there are general results in the subject; see Exercise 10, for example. The reason is
that an intermediate concept really needs to be introduced.
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Definition 4.23. Suppose X is a Hausdorff locally convex space. Then X is
quasi-complete if every bounded Cauchy net is convergent.

Observe that complete implies quasi-complete trivially. Also, quasi-complete
implies sequentially complete, since every Cauchy sequence is bounded: If (x,)
is a Cauchy sequence, and U is a convex, balanced neighborhood of 0, then there
exists N st.m,n > N = x, — x, € U. Also, there exists ¢ > 0 such that
{x1,...,xy} CcU C (c+1)U.Butthenx, = x,—xy+xy € U+cU = (c+1)U
whenn > N, too, so all x, € (¢ + 1)U. (Note: A generality below, Theorem 4.28,
will also cover this.)

Theorem 4.24. Suppose X and Y are Hausdorff locally convex spaces, and
suppose Y is quasi-complete.

(a) If X is infrabarreled, then Z.(X,Y) is quasi-complete in the topology of
bounded convergence.

(b) If X is barreled, then Z.(X,Y) is quasi-complete in the topology of pointwise
convergence.

Proof. Suppose (Ty) is a Cauchy net that is bounded in the topology of pointwise
convergence. Then for all x € X, {T,(x)} is bounded by Proposition 4.14(a). Also:
To —Tp € N({x},U) & T,(x) — Tg(x) € U, and the former can be enforced by
requiring & and B to be “large,” so (letting U vary) (T, (x)) is a Cauchy net in Y.
Hence T(x) = lim T, (x) exists since Y is quasi-complete, and this 7 is a linear
transformation (Proposition 4.19). The point here is that in both (a) and (b), we
have a limiting transformation. (Note that a bounded Cauchy net in the topology
of bounded convergence is a bounded Cauchy net in the topology of pointwise
convergence.)

Now suppose A4 is bounded [part (a)] or finite [part (b)]. If U is a neighborhood
of 0 in Y, choose a barrel neighborhood V' of 0 in Y such that V' C U. Then as in
the proof of Theorem 4.20, two things happen, but the reasoning now is different.

First of all, by Theorem 4.16, {T,} is equicontinuous [Theorem 4.16(b) for part
(a), Theorem 4.16(d) for part (b)]. Hence there exists a neighborhood W of 0 in X
such that for all x € W and all o, T,(x) € V. Hence T(x) = limTy(x) € V
when x € W since V is closed. That is, W C T~!(V). Letting V float, T is now
continuous by Proposition 1.26.

Finally, T, — T in the relevant topology: there exists « s.t. B,y > o = Tg —
T, € N(A,V). Thatis, if x € A, then Tg(x) — T, (x) € V when B,y > «. Again,
letting y — oo, Tg(x) — T'(x) € V since V is closed (this part follows the pattern
in Theorem 4.20), when B > e and x € A,sothat Tg — T € N(A,V) C N(4,U)
when B8 > «. This just means that 7, — T in the relevant topology, by letting A
and U vary. O

Corollary 4.25. Suppose X is a Hausdor{f locally convex space.

(a) If X is infrabarreled, then X* is quasi-complete in the strong topology.
(b) If X is barreled, then X* is quasi-complete in the weak-* topology.
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Part (b) in both results is a bit of a surprise; quasi-completeness does not
require that the topology be excessively fine. However, one’s intuitive association
of completeness with fineness is not totally wrong; see Exercise 9. Completeness
definitely does not always descend to coarser topologies: A nonreflexive Banach
space is not even quasi-complete in its weak topology (Chap. 5, Exercise 13). By the
way, the weak-* topology on X™* cannot actually be complete unless X* = X'; see
Exercise 4 from Chap. 3. However, there are spaces for which X* = X’ (Example
I from Sect.3.8) and for which X* is complete in the weak-* topology (see
Exercise 11), so even completeness does not require a space to have a spectacularly
fine topology.

Quasi-completeness is a useful concept. It implies sequential completeness, but it
also has application beyond that. Probably the most important concerns the relation
between compactness and precompactness.

Definition 4.26. Suppose X is a Hausdorff locally convex space, and A C X. A is
precompact if for each neighborhood U of 0, there exists x, ..., X, € A such that
AC Ux; + U.

This formulation will help later. Many texts use the phrase “totally bounded”
instead of precompact. Note that the definition makes sense in any topological vector
space (or even in a topological group, for “left precompact”). However, it is for
Hausdorff locally convex spaces that the generalities in Theorem 4.28 will be easily
proven. We need a lemma first.

Lemma 4.27. Suppose X is a Hausdorff locally convex space, and A C X. Then
the following are equivalent:

(i) A is precompact.
(ii) For each neighborhood U of 0, there exists a finite set Fy C X such that
AC Fy +U.
(iii) For each neighborhood U of 0, there exists a compact set Ky C X such that
AC Ky +U.

Proof. (i) = (ii), since the definition provides Fy = {x1,...,x,} C A. Then (ii)
= (iii), since finite sets are compact. Suppose (iii). Given a neighborhood U of 0,
choose an open convex, balanced neighborhood V' of 0 for which V' C %U , that is
4V Cc U.Then A C Ky + V.Now Ky iscoveredby all y + V, y € Ky, so there
exists yi, ..., yn in Ky for which Ky C Uy; 4V .Reorder so that AN (y; +2V) #
@forj =1,...,n,and AN (y; +2V) = @ for j = n+1,...,N. Choose
x; € AN(yj+2V)forj =1,...,n Theclaimisthat A C Ux; +4V C Ux; +U.

Supposea € A. Thena € A C Ky + V, so there exists x € Ky and v € V such
thata = x + v, thatisa —v = x. Butx € y; + V forsome j. Hencea = x +v €
y;j +V +V =y; + 2V [Proposition 3.3(b)], so A N (y; + 2V') is nonempty, and
J <n.Writea =y;+w,we2V.Also,x; € y; +2V,s0y; = x; +w,w €2V,
since 2V is balanced. Butnowa = x; +w +w e x; + 2V +2V =x; +4V. O
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Theorem 4.28. Suppose X is a Hausdorff locally convex space.

(a) Compact sets are precompact.

(b) Precompact sets are bounded.

(c) Cauchy sequences are precompact.

(d) The closure of a precompact set is precompact.

(e) Any subset of a precompact set is precompact.

(f) The union of finitely many precompact sets is precompact.
(g) The convex hull of a precompact set is precompact.

(h) A complete precompact set is compact.

Proof. (a) Is trivial.

(b) If A is precompact and U is a convex, balanced neighborhood of 0, then A C
Ky + U for some compact Ky. Ky is bounded, so Kyy C cU for some ¢ > 0,
soACKy+UCcU+U=(+1U.

(c) If (x,) is a Cauchy sequence and U is any neighborhood of 0, there exists N s.t.
Xy —Xp € U whenn,m > N.In particular, x, —xy € U, thatisx, € xy + U,
whenn > N.Hence x; + U, ..., xy + U covers {x,}.

(d) If A is precompact, and U is a neighborhood of 0, choose a convex, balanced
neighborhood V of O with V' C %U. Then A C Ky + V, so by Proposition 1.9,
ATCA+VCKy+V+V=Ky+2VCKy+U.

(e) fAC Ky+Uand B C A,then B C Ky + U, too.

(f) Ifeach A; C Ky; + U, then | J}_, A; is contained in | J;_, Ky,; + U.

(g) Suppose A is precompact and U is a neighborhood of 0. Choose an open,
convex, balanced neighborhood V' of 0 for which V' C U. Choose xi,...,x, €
A for which A C Ux; + V. Set Ky = convex hull of {x1,...,x,}. Then

n
Ky =1 t;x;: allt; = 0and Xt; = 1
j=1

is the continuous image of a compact simplex in R”, so Ky is compact. Now
Ky is also convex, asis V,s0 A C Ky + V, a convex set. Hence con(A4), the
convex hull of A4, is containedin Ky +V C Ky + U.

(h) Suppose not; suppose A is precompact and complete but is not compact.
Following Proposition A.13 in Appendix A, let & be an open cover of A which
is maximal (under set inclusion) with respect to the property of not having a
finite subcover of A. Then @ € &2, and if U and V are open with U NV € &,
then U € & or V € & by Proposition A.13. Now let D be the directed set of
open, convex, balanced neighborhoods of 0 in X, where U > V when U C V.
If U € D, then since A is precompact, A C F + U for some finite set F in A.
(This is where the requirement in the definition of precompact that all x; € A
is helpful.) Now {x + U : x € F} is a finite cover of A4, so it is not a subcover
of &, so there exists xy € F for which xy + U ¢ &. The claim is that (xy)
is a Cauchy net, after which a contradiction will be derived from the fact that
its limit must be covered by Z.
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(xp) is a Cauchy net: Suppose U is an open, convex, balanced neighborhood
of 0.If V,W € D and V,W C U, then xy + V and xy + W are not in 2,
so(xy +V)N(xw+ W) P . Sinced e 2, (xy +V)N(xw+ W) # @, s0
there exists x € (xy + V)N (xw + W).Hencex —xy € Vand x —xy € W,
so that xy —x € V (V is balanced), and xy —xy = Xy —x + x — xyy €
V+WcsU+3U=U.

A is complete; set x = lim xy. Choose W € & for which x € W. Choose
U, € D for which x + U; C W. Choose U, € D for whichV C U, = xy €
x4+ 1U1.SetU = (JU1) N Uz then U € D,and U C Uy, s0 xy € x + SUL.
ButU C %Ul aswell, soxy + U C x + %Ul + %Ul =x + U; C W. Hence
xy + U € & by Proposition A.13, since W € &, contradicting the choice
of xy. |

Corollary 4.29. Suppose X is a Hausdorff, quasi-complete, locally convex space.
Then the closed convex hull of a compact set is compact.

Proof. 1f A is compact, then A is precompact [part (a)], hence con(A) is precompact
[part (g)], hence con(A)~ is precompact [part (d)] and complete [part (b)], hence is
compact [part (h)]. |

Corollary 4.30. Suppose X is a Hausdorff, quasi-complete, locally convex space.
If A is compact in X, then (A°). is compact.

Proof. Let K denote the closed convex hull of A; then K is compact by Corol-
lary 4.29. Hence (K°), is compact by Proposition 3.21. But A € K = A° D
K° = (A4°)o C (K°)o by Proposition 3.19, so (A°). is compact since it is also
closed. O

Remark. (A°)o = (K°), in the above proof; see Exercise 12.

One final note. For Corollaries 4.29 and 4.30, what is really needed as a property
of X is that all precompact Cauchy nets are convergent. However, this does not seem
to be very helpful, since precompact sets are hard to identify functional analytically,
whereas Corollary 3.31 identifies bounded sets via the dual.

4.4 The Open Mapping Theorem

The proof of the open mapping theorem for Banach spaces has two parts: a category
argument in the range space, followed by a sequential argument in the domain. The
proof here will follow a similar pattern, but it is useful to make note of what is known
at the halfway point. This involves a new concept which is actually topological in
nature.

Definition 4.31. Suppose X and Y are topological spaces, and f : X — Y isa
function. Then f is nearly open if for all open U C X:

SU) Cint(f(U)7).
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Here, we are primarily concerned with continuous, nearly open maps. The
following facts appear among the exercises at the end of this chapter:

1. Suppose Y is a topological space, and X is a dense subspace. Then the inclusion
map X < Y is nearly open.

2. Suppose X is a locally compact Hausdorff space and Y is a Hausdorff space.
Then any continuous, nearly open map f : X — Y is an open map.

This seems to indicate that some form of completeness and uniformity is
needed to force a continuous, nearly open map to be open. Completeness alone,
however, is not enough.

3. There exists a complete metric space X, a compact metric space Y, and a
continuous (Lipschitz, actually), nearly open map f : X — Y which is not
open.

Here, as sets,
o0
X = J00.1]-¢™"inC ~ R?, and
n=1

Y=X f(@) =z

The metric on Y is the usual Euclidean metric on C, while the metric on X is the
“Washington metric” discussed in the second “Nonexample” at the beginning of
Sect.2.1: d(z,w) = |z — w| if z and w are colinear, but d(z, w) = |z| + |w]| if not.

The next result will be useful for establishing 1-3 above, and illuminate the
situation for linear maps on locally convex spaces. (Linearity will eventually provide
the needed uniformity.)

Proposition 4.32. Suppose X and Y are topological spaces, and f : X — Y isa
function. Then the following are equivalent:

(i) f isnearly open.
(ii) There exists a global base 2 for the topology on X (consisting of open sets)
for which f(B) C int(f(B)™) forall B € A.
(iii) For all x € X, there exists a local base B for the topology on X (not
necessarily consisting of open sets) for which f(x) € int(f(B)™) for all
B e A,.

Proof. (i) = (ii) Since global bases exist (the whole topology is one such!), and
global bases consist of open sets B for which f(B) C int(f(B)7)
when f is nearly open.

(ii) = (iii) Since if A is a global base as in (ii), then &, = {B € & :x € B}isa
local base for which f(x) € f(B) Cint(f(B)™).

(iii) = (i) Suppose U is openin X, and x € U. Let %, be as in (iii) Choose B €
P, for which B C U. Then f(B) C f(U), f(B)~ C f(U)", and
f(x) eint(f(B)7) Cint( f(U)7). Since f(x) is actually an arbitrary
pointin f(U), f(U) C int(f(U)7).
O
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Corollary 4.33. Suppose X and Y are topological vector spaces, and T : X — Y
is a linear map. Let % denote a base for the topology of X at 0. Then T is nearly
open if, and only if, T (B)~ is a neighborhood of 0 in Y for all B € %,.

Proof. 1f part: for all x € X, x 4+ %, is a base at x, and forall B € %, : 0 €
int(T(B)™) = T(x) € T(x) +int(T(B)") =int(T(x) + T(B)") = int(T(x +
B)7™) since translation is a homeomorphism.

Only if part: 0 € T(int(B)) C int(T (int(B))™) C int(T(B)™) for all B € %,
when T is nearly open. O

Corollary 4.34. Suppose X and Y are Hausdorff locally convex spaces, and
suppose Y is barreled. Then any linear map T from X onto Y is nearly open.

Proof. Use %, = all convex, balanced neighborhoods of 0 in X. If B € %, and
x € X,thenx € ¢cB = T(x) € T(cB) = ¢T(B), so T(B) is convex, balanced,
and absorbent (since T is onto). Hence 7'(B)~ is closed, convex (Proposition 2.13),
balanced (Proposition 2.5), and absorbent, that is 7(B)~ is a barrel in Y. Since ¥
is assumed to be barreled, 7(B)~ is a neighborhood of 0. Hence 7T is nearly open
by Corollary 4.33. O

(There are certain points where using the barreled condition seems almost like
cheating. This is one of them.)

We can now prove the open mapping theorem in our Hausdorff, locally convex
space context.

Theorem 4.35 (Open Mapping Theorem). Suppose X and Y are Hausdorff
locally convex spaces, and T : X — Y is a continuous linear map.

(a) If T is onto and Y is barreled, then T is nearly open.
(b) If T is nearly open and X is a Fréchet space, then T is open (and onto).

Proof. Part (a) is immediate from Corollary 4.34. For part (b), assume 7 is nearly
open and X is a Fréchet space. Let U be a neighborhood of 0 in X. Choose a base
Py = {B1, B, ...} in accordance with Theorem 1.13 for which B; = —B; and
Bji1+ Bj4+1 C By, all B; being closed, and By C U.

Suppose y € T(B,)~. Then since T(B3)~ is a neighborhood of 0,

y€T(By)~ CT(By)+T(B;3)™,

soy = T(x2) + y3, X2 € By and y3 € T(B3)~. Since T(B4)~ is a neighborhood
of 0,

y3 €T(B3)” CT(B3) +T(Bs)", so
y3 = T(X3) + V4s X3 € B3 and Y4 € T(B4)_.

Recursively:

yw€T(B,)” CT(By)+ T(By+1)", so
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Yu =T (xn) + Yut+1, %0 € Byand y,41 € T(Bu41)”.

We now have that x = X'x; converges, thanks to Theorem 1.35. Now, as a result
of the observation in the paragraph preceding Theorem 1.35, B + B3 +---+ B, C
By, that is all partial sums of X'x; lie in By, so x € By since B is closed. There is
more:

y=Tx2) +y3 =T(x2) + T(x3) + y4
= T(x2) + T(x3) + T(x4) + ys

n n
= ZT(X]') + Yn+1 =T ij + Yn+1
=2 =2

So:

n
i =y =T Y x| >y -Tw®)
j=2

since T is continuous. Note that y, € T(B,)~, and
k>n= By CB,= yceT(By) CT(B,),

soy —T(x) € T(B,)™ for all n. Now if V is any closed neighborhood of 0 in
Y, then B, C T~ (V) for some n since T is continuous, so T(B,) C V and
y—T(x) € T(B,)~ C V since V is closed. Hence y — T'(x) = 0 since Y is
Hausdorff. We now have that y = T'(x) € T(B;) C T(U). Since y was arbitrary
in T(By)™: T(By)~ € T(U), so T(U) is a neighborhood of 0 in Y. Hence T is
open by Proposition 1.26(b). Finally, T is now onto, since 7'(X) must be an open
subspace of Y, thatis T(X) =Y. O

Remark. The above proof that “nearly open = open” actually works for topological
groups. The hypotheses required are that X and Y be Hausdorff topological groups,
with X being first countable and complete; and 7 : X — Y be a continuous, nearly
open homomorphism. The conclusion is that 7' is an open map, and that 7(X) is
then an open subgroup of Y. The proof is almost identical: All you have to do
is replace each plus sign with a multiplication symbol (e.g., “y = T(x2) + y3”
becomes “y = T'(x) - y3, and “x = Xx;” becomes “x = [[x;”); after reversing
the order of y — T'(x) [and y — T' (¥ x )], which, for example, becomes —7 (x) + y
and then T'(x)™! - y. That’s it. Something similar happens with the closed graph
theorem.

By the way, a typical application of the “nearly open = onto” part will appear in
Chap. 5.
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Corollary 4.36. Suppose X is a Fréchet space, and Y is a barreled, Hausdorff,
locally convex space. Suppose T : X — Y is a continuous linear map from X
onto Y. Then T induces an isomorphism of the Fréchet space X / ker(T) with Y.

Proof. The induced map is continuous and open by Theorem 1.23(c) and (e), and is
an algebraic isomorphism for the usual algebraic reasons. X/ ker(7") is Hausdorff
since ker7 = T~!({0}) is closed [Theorem 1.23(g)], while X/ker(T) is first
countable by Theorem 1.23(f) and complete by Corollary 1.36. Hence X/ ker(T')
is a Fréchet space (Corollary 3.36). O

Now for the closed graph theorem.

4.5 The Closed Graph Theorem

For Banach spaces, it is traditional to prove the open mapping theorem, and then
derive the closed graph theorem as a corollary. There is a reason for that, even
though the open mapping theorem can be just as easily derived from the closed graph
theorem. A direct proof of the open mapping theorem involves two steps; these are
parts (a) and (b) of Theorem 4.35 in the last section. [In our context, part (a) was
trivial only because Theorem 4.5 was available.] A direct proof of the closed graph
theorem, however, involves three steps. Here, we have to go through that because
the two results are largely independent. True, one can derive Corollary 4.36 from the
closed graph theorem as it appears here, but Theorem 4.35b) does not directly follow
from this. Also, the closed graph theorem cannot be derived directly from the open
mapping theorem due to the asymmetry in the conditions on the spaces: The graph
does not inherit any nice properties.

There is a version of the closed graph theorem that can be used to directly prove
the open mapping theorem; it is rather messy, and is given in Appendix B. (It applies
to topological groups.)

Theorem 4.37 (Closed Graph Theorem). Suppose X and Y are Hausdorff
locally convex spaces, and suppose X is barreled and Y is a Fréchet space.
Suppose T : X — Y is a linear transformation with a graph, I'(T), that is closed
in X xY.Then T is continuous.

Proof. Let U be a convex, balanced neighborhood of 0 in Y. In view of Proposi-
tion 1.26(a), it suffices to prove that for any such U, T~!(U) is a neighborhood
of 0. As in the proof of the open mapping theorem, choose a base at 0 for
Y : 330 = {Bl,Bz,...}, with Bj = —Bj, B]‘.H + B]‘J,_] C Bj, all Bj ClOSCd,
and B; C U. Given any B, there exists a convex, balanced neighborhood W of 0
such that W C B;. Now given any x, W absorbs T'(x), so T~! (W) absorbs x.
That is, T~'(W) is convex, balanced, and absorbent, so T~ (W)~ is a barrel,
and so is a neighborhood of 0 in X. Since W C B;: T"' (W) C T~'(B;), so
T='(W)~ c T~Y(B;)~. That is, every T~'(B;)~ is a neighborhood of 0 in X.
This is the first step in the proof.
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For the second step, suppose x € T ~'(B,)~. We will eventually show that
T(x) € U, so that x € T~'(U), giving T~'(B,)~ C T~'(U) by letting x vary.
This will complete the proof, but there are two distinct parts to this. The current one
produces a candidate y € B; C U for which (eventually) 7'(x) will equal y, and
the last step will establish that 7(x) = y. This y is the sum of a series in the same
manner as occurred in the proof of the open mapping theorem. Now x € T~1(B,)~,
so again

x €T " (By)" cT ' (By) + T ' (B3)~

by Proposition 1.9. Write x = x, + x5, with T(x,) € By and x; € T'(B;)". In
general, given

x;/1 € T_I(Bn)_ C T_I(Bn) + T_I(Bn+l)_
recursively set X, = x, + X, X, € T~'(B,) and x}, , € T~'(B,41)”. Hence

T (x,) € B,.In general,

n
’ ’ /
X:xZ+x3:x2+x3—|—x4:...: E xj+'xn+1'
j=2

n
so that x — Z)Cj = xz/1+1 € T_I(B,,.H)_.
j=2

Since T'(x;) € B;, y = )_T(x;) convergesin Y by Theorem 1.35.

The final step is to show that 7'(x) = y. This is where we use the fact that I"(T")
is closed. To show that T'(x) = y, it suffices to show that if I/ is a convex, balanced
neighborhood of 0 in X and # is any index, then

[(x,y)+V x B, ]NT(T) # @,

since (x, y) will then be adherent to I'(T"), hence (x,y) € I'(T) since I'(T) is
closed. For this purpose, note that

x=Y xj=x, €T (Buy)” CT ' Bup) +V
j=2

n
sothatx—ij =x/,+v.T(x, ) € By, veV.
=2

n
andx;’+l+2xj=x—vex+1/.
j=2
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Now

Y=Y TE)=> Tx)+ Y T(x))
j=2 j=2

j=n+1

o n
set ¥, = Z T(xj), sothaty =y, + T ij
j=n+1 j=2

Now B, +1 + By4+2 +---+ By C B, as in the discussion preceding Theorem 1.35,
so the partial sums for y, are in B,. Hence y, € B, since B, is closed. Now
T(x;/{+1) € Bn+1, SO T(x;/{-q_]) - fn € Bn+1 + Bn C Bn—l (Bn = _Bn)- Hence

n
T x)+ > x| =y + T« —
j=2

ey + B,_.

Thus (finally!):

(x,y) + (-, T(x;,/-H) — V)
=+ X T+
j=2 j=2

€[(x.y) + V x Byl [\ I(T)

|

Some of the consequences of the closed graph theorem are downright weird. For
example:

Corollary 4.38. Suppose X and Y are Hausdorff locally convex spaces, and sup-
pose X is barreled and Y is a Fréchet space. Suppose T is a linear transformation
from X to Y, and suppose Z is a Hausdorff space and I : Y — Z is a one-to-one
continuous function for which F o T is continuous. Then T is continuous.

Proof. I'(T) = (id x F)"'(I'(F o T)) is closed. ]

What makes this useful is that continuity can be deduced using a coarser topology
[the topology from Z induced on F(Y), then pulled back to Y']. When the topology
is coarser, it is easier for a function to be continuous (fewer open sets with inverse
images that must be open) but harder to have closed graph (the topology on X x Y is
coarser). The closed graph theorem actually provides continuity in a fine topology
on Y, which after all is a Mackey space (Theorem 4.5 plus Corollary 4.9).
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Example 5. Suppose Z is a Hausdorff topological vector space, and X is a
subspace. Call X “Fréchetable” if X can be equipped with a Fréchet space structure
for which the inclusion X < Z is continuous. If so, that Fréchet space structure
is unique. (Let ¥ = X as sets in Corollary 4.38, but with possibly different
topologies on X and Y. Then reverse their roles.) For example, ACy[0, 1], the space
of absolutely continuous functions f on [0, 1] for which f(0) = O, sits inside
C([0, 1]), and is a Banach space, with the norm being total variation. Total variation?
Where did that come from? Simply from how it sits as a subspace of C([0, 1]),
ACy[0, 1] somehow “invents” total variation! Happy Halloween!

We close with a result commonly stated for Banach spaces. In that context, it is
an easy consequence of either the closed graph theorem (which is why it is here) or
the uniform boundedness principle. In fact, very little is needed. What really makes
it work is the fact that locally convex spaces are locally weakly closed.

Proposition 4.39. Suppose X and Y are Hausdorff locally convex spaces, and
suppose X is infrabarreled. Suppose T : X — Y is a linear transformation for
which f oT € X* whenever f € Y* Then T is continuous.

Proof. Firstofall,if f € Y*, thenx € {f}o < | f(x)| <1, s0

T {fYe) =T7'(f 'z 2 = 13)
=(foD)'(z:lzl =1}

is a neighborhood of 0 in X, and
n
T A fisees fude) = (o D)7 2z el < 1)
j=1

is a neighborhood of 0 in X. Letting Y,, denote ¥ with the weak topology, T €
Z.(X,Y,) by Proposition 1.26(a).

Let B be a barrel neighborhood of 0 in Y'; then 71 (B) is convex, balanced, and
absorbent. [As before, T~!(B) absorbs x because B absorbs T'(x).] But T~!(B) is
also closed, since B is weakly closed. Now suppose A is bounded in X. Then every
f oT is bounded on A when f € Y*, soevery f € Y* is bounded on T (A).
Hence T'(A) is bounded in Y by Corollary 3.31. Hence T (A) C ¢B for some ¢, so
A C TYT(A) c T '(cB) = ¢T~'(B). That is, T~'(B) absorbs A. Since A4
was arbitrary, 7! (B) is a neighborhood of 0 since X is infrabarreled. Since B was
an arbitrary barrel neighborhood of 0 in Y, T is continuous by Proposition 1.26(a).

|

A final comment. The closed graph theorem will be proven in a different context
in Chap.5, where the assumption that Y is a Fréchet space will be replaced by a
different, more general, assumption. The proof will be based on Proposition 4.39
above; the fact that I'(T') is closed basically will be used to get that (X xY)/I'(T)
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is a Hausdorff space. However, the fact that the assumption on Y is more general is
deep, usually depending on Krein—Smulian I in Chap. 6. (An alternate, independent
approach, appears in Exercise 20 of Chap. 5.) The proof given in this section is a lot
cheaper to get.

Exercises

1

. Suppose X is a Hausdorff locally convex space, and B is a nonempty closed,

convex, balanced subset of X.

(a) Show that B is a barrel if, and only if, B® is weak-* bounded in X *.
(b) Show that B absorbs all bounded sets in X if, and only if, B° is strongly
bounded in X *.

2. Suppose X is a Hausdorff locally convex space, and suppose X is infrabarreled.

3.

Show that a strongly bounded, weak-* closed subset of X* is weak-* compact.
(Partial converse to #2) Suppose X is a Hausdorff locally convex space, and
suppose that any strongly bounded, weak-* closed subset of X* is weak-*
compact. Show that the Mackey topology on X is infrabarreled.

. Suppose X and Y are Hausdorff locally convex spaces over the same field F (R

or C), and suppose B : X x Y — T is a separately continuous bilinear form.
Show that if X is barreled, then the map
X — Y* = strong dual of Y

X+ B(x,?)

is continuous. Use this to prove the Hellinger—Toeplitz theorem:

If X is barreled, and T : X — X* is a function such that for all x, y €
X : T(x)(y) = T(y)(x), then T is a continuous linear transformation.

. Suppose X is a Hausdorff locally convex space over the base field F (R or C),

and suppose the evaluation map
X*xX—>F
(fox) = f(x)

is jointly continuous. Show that the topology of X can be given by a norm.
Hint: {z € F : |z] < 1} is a perfectly good neighborhood of 0 in I, and it works
well with polars.

. Using Exercise 5, show that if the dual of a Fréchet space is another Fréchet

space, then the topology of the original space can be given by a norm.

. Suppose X is a Hausdorff locally convex space. Show that X is quasi-complete

if and only if closed, bounded sets are complete.
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8.

10.

11.

12.

13.

14.

15.

Suppose X is a Hausdorff locally convex space, with topology 7y and dual
space X *. Let t3s denote the Mackey topology on X, and suppose 7, is a locally
convex topology on X for which 7y D 71 D 7¢. Finally, suppose A is a subset
of X which is complete in the topology 7p. Show that A is complete in the
topology 7.

Hint: The topology t; is locally weakly closed, hence is locally 7o-closed.
(Use barrel neighborhoods.) Now look closely at the completeness parts of the
proofs of Proposition 3.30 and Theorem 4.20.

. Suppose X is a Hausdorff locally convex space, with topology 7o and dual

space X *. Let t3; denote the Mackey topology on X, and suppose 7, is a locally
convex topology on X for which tyy D 71 D 7. Using the preceding two
problems, prove:

(a) If (X, o) is complete, the (X, 77) is complete.
(b) If (X, 19) is quasi-complete, then (X, 77) is quasi-complete.

Suppose X and Y are Hausdorff locally convex spaces, with X being infrabar-
reled and Y being sequentially complete. Show that .Z. (X, Y) is sequentially
complete in the topology of bounded convergence.

Suppose X is a Hausdorff locally convex space. Show that X * is complete in
the weak-* topology if, and only if, X* = X'.

Suppose X is alocally convex space, and A C X . Show thatif A C B C (A4°).,
then A° = B°. Do this without choosing elements from either side; use set
containments and the bipolar theorem.

Suppose Y is a topological space and X is a dense subspace. Show that the
inclusion map X < Y is nearly open.

Suppose X is a locally compact Hausdorff space, and Y is a Hausdorff space.
Show thatif f : X — Y is continuous and nearly open, then f is an open map.
Set

X = J[0,1]- ™" inC ~ R?, and

(@

—_

n

Y=X =XU[0,1]

equip Y with the usual Euclidean metric, and X with the “Washington metric,”
where

|z — w| if z and w are colinear
d(z,w) = .
|z| + |w] if not.

Show that R2, with the Washington metric, is complete, and show that X is
closed in this metric. Finally, show that X < Y is continuous and nearly open,
but not open.
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16. Suppose X and Y are two Hausdorff locally convex spaces.

(a) Show thatif X and Y are complete, then sois X x Y.
(b) Show that if X and Y are first countable, then sois X x Y.
(Moral: If X and Y are Fréchet spaces, then sois X x Y.)

17. Suppose X is a Fréchet space and Y is barreled, and suppose 7' : X — Y has
dense range but is not onto. Show that the algebraic dimension of Y/ T (X) is
infinite. Hint: If not, choose a finite-dimensional complementary subspace Z,
and consider Z x X — Y, (z,x) + z+ T'(x). Use the open mapping theorem.
(See Exercise 16.)

18. (Converse to Theorem 4.12) Suppose Y is a Hausdorff locally convex space,
and suppose %(Y,Z) = £.(Y,Z) whenever Z is a normed space. Show
that Y is bornological. Suggestion: If C is a convex, balanced subset of Y that
absorbs all bounded sets, let pc denote the associated Minkowski functional.
Let X denote the vector space Y topologized with the seminorm p¢, and apply
Chap. 3, Exercise 9.

19. (See previous exercise.) Suppose X is a Hausdorff locally convex space. Show
that X is bornological provided X is infrabarreled and every bounded linear
functional on X is continuous.

The next six problems are concerned with the closed graph theorem. The first
two are very similar. The trick for the first four (as is often the case) is to come up
with the appropriate spaces and maps.

20. Let u denote Lebesgue measure on R. Suppose g : R — R is a measurable
function with the property that for all measurable f : R — R:

[ 15t <00 = [ sl < oo,

Show that [ |g|*du < oc.

21. Suppose (X, %) is a measurable space, and suppose p and v are two finite
measures on (X, %) having the same sets of measure zero. Finally, suppose
l < p<oocandl = % + é Show that L?(u) C L'(v) if, and only if,
[dv/du] € Li(w). Here, [dv/du] denotes the function class of the Radon—
Nikodym derivative.

22. (Weak integrals) Suppose (X, %, u) is a measure space, and ¢ is a Hilbert
space. Suppose f : X — JZ is a function with the property that for all v €
H, x — (f(x),v) is an integrable function. Show that there exists a vector
I(f) € S, called the weak integral of f, for which

(I(f).v) Z/X(f(X),v)dM(X)-

Hint: If S is a Hilbert space over C, look at (v, f(x)). Do you see why?
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23.

24.
25.

Suppose (b, ) is a sequence of real numbers such that for all real sequences (a,):

o0
nll)ngoan =0= Z|anb,,| < 00.

n=1

Show that Y |b,| < oo.

Derive Corollary 4.36 from the closed graph theorem.

Suppose X is an LF-space and Y is a Fréchet space. Show that a linear map
T : X — Y is continuous provided that its graph is sequentially closed.

Note: When doing Exercise 22, you probably had to use sequences. Lebesgue

integrals work well with sequences, but not with nets, since measures are only
countably additive.

The next three problems are purely topological, and will be used in the last three

problems.

26.

27.

28.

29.

30.

31.

Suppose X is a topological space, and Y is a subspace. Suppose A C Y. Show
that if A is nowhere dense in Y, then A is nowhere dense in X . (Recall: A~ NY
is the closure of Ain Y.)

Suppose X is a second category topological space. Show that X is not a
countable union of first category subspaces.

Suppose X is a second category topological space, and suppose X = | Xy,
where X; C X, C ---. Show that there exists N such that X, is second category
forn > N.

Show that an infinite-dimensional Fréchet space cannot have countable alge-
braic dimension, that is cannot have a countable Hamel basis.

(Bourbaki) Suppose X is an infinite dimensional Fréchet space. Let B; denote
a countably infinite, linearly independent subset of X. Let ¥ denote the closure
of the linear span of B;, and extend B; to a Hamel basis B, of Y. B; is
uncountable by Exercise 29. Finally, extend B, to a Hamel basis Bz of X. Let
C = {vy, vy, v3,-- -} be a countably infinite subset of B, — Bj. Set

X, = algebraic linear span of (B3 — {v,, Uy+1,...}).

Show that X = J X, X1 & X» & X3---, and all X, are dense in X. Hence
by Exercise 28, X, is second category beyond some point, and so is barreled.
(Theorem 4.5.)

Suppose ¥ = UY, is an LF-space, X is a Hausdorff locally convex space, and
T : X — Y is alinear transformation with a graph that is closed in X x Y.

(a) Suppose X is a Fréchet space. Show that T is continuous. Suggestion:
Use Exercise 19 from Chap. 1, with H =Y, forn sufficiently large:
“Sufficiently large” is obtained from Exercise 28, with X, = T7!(Y,).
Theorem 4.5 and Baire category also arise here, as does Theorem 4.37.

(b) Suppose X is an LF-space. Show that T is continuous.



Chapter 5
Dual Spaces

5.1 Adjoints

Perhaps a better title for this chapter would be “Duality,” but this has a special
meaning in functional analysis: an abstraction of the notion of a space X and its
dual X* into a pairing (X, Y), where X is a vector space and Y is a space of linear
functionals on X. The subject has its uses; the argument in Proposition 5.38 of
Sect. 5.7 is based on such concepts. However, it leads away from the more practical
functional analysis that is the subject of this book. Typically, one has some fairly
specific spaces in mind, which then dictate the dual structure.

Probably the most fundamental concept here that is not normally discussed in
beginning graduate real analysis is the notion of an adjoint map (although the
underlying idea often does appear in beginning graduate algebra!).

Definition 5.1. Suppose X and Y are locally convex spaces,and 7 : X — Y is a
continuous linear map. The adjoint of 7', denoted by 7, is the map from Y * to X *
defined by T*(f) = f o T. Thatis,

T":Y* > X*

fr> foT
Vxe X, VfeY™ : [T"(NH]x) = fITx)]

The preceding is a bit pedantic because the concept is slippery, appearing simul-
taneously trivial and mind-bending, particularly if one is interested in establishing
results about 7*. Consider the following.

Theorem 5.2. Suppose X and Y are locally convex spaces, and T : X — Y
is a continuous linear map. Letting X* and Y™* denote their strong dual spaces,
T* : Y* — X* is a continuous linear map. Also, if A C X, then T(A)° =
(T*)™Y(A°). Finally, T* is continuous when X* and Y* are equipped with their
weak-* topologies.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 123
DOI 10.1007/978-3-319-02045-7__5, © Springer International Publishing Switzerland 2014
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Proof. Letting F denote the base field, if c € F, x € X, and f, g € Y*, then

T*(cf)(x) = (/NI (x)) = cf(T(x))
= c[T* (/)] = [cT*()](x), and
T*(f +9)x) = (f + )(T(x) = f(T(x) + g(T(x))
=T*(f)x) + T (@) = [T*(f) + T (] (x).

so T* is linear.
Next, suppose A C X. Then for all f € Y*:

feT(A)°® ©Vxed: |f(Tx)| <1
S Vxed: |T*(fHx)] <1
&S T*(f)e A & f e (TH1(A°).

In particular, if F is finite in X, then (T*)~!(F°) = T(F)°, so T* is continuous
when X™* and Y* have their weak-* topologies.

Finally, T* is strongly continuous since T is bounded: If 4 is bounded in X,
so that A° is a typical neighborhood of 0 in X*, then (T*)~!(4°) = (T(A4))° is a
strong neighborhood of 0 in Y *. O

Now for the subtleties. The fact that 7* is linear is not a surprise, but note that it
has nothing to do with the fact that 7 is linear. It simply follows from how F-valued
functions are added together or multiplied by scalars. Also, the continuity proof
made no use of the fact that 7 was continuous, only that 7" was bounded. What
the (stronger) continuity condition does is guarantee that 7* takes values in X*.
If T were only bounded, then 7*(f) would be a bounded (but not necessarily
continuous) linear functional.

There are two more results to establish.

Proposition 5.3. Suppose X,Y, and Z are locally convex spaces, and T €
Z.(X,Y)and S € £,(Y,Z).Then ST = SoT € £.(X,Z),and (ST)* = T*S*.

Proof. If x € X and f € Z*, then

(STY*(f)(x) = f(SoT(x)) = f(S[T(x)]
= S*NIT )] = T*S*(NHIX).

O
Proposition 5.4. Suppose X and Y are locally convex spaces. Equip £.(X,Y)
and Z£.(Y*, X™) with their topologies of bounded convergence. Then T +> T*
is a linear map from Z.(X,Y) to L.(Y*, X*), which is continuous when Y is
infrabarreled.
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Proof. If S,T € £.(X,Y),thenforall f € Y*, x € X, and scalar c:

(cT)(f)(x) = f(cT(x) = cf(T(x))
= c[T*(f)(x)] = [eT*](f)(x) and
S+T)(Hx) = fIS+ D] = fISx) + T(x)]

= IS+ fIT)] = S*()(x) + T*(f)(x)
= [S*() + T*(HIx) = [S* + T*](f) ().

Notice! The linearity of 7 plays no role here, but the linearity of f does.

Now suppose Y is infrabarreled. A typical neighborhood of 0 in .Z.(Y™*, X*)

has the form N(E, A®), where E is strongly bounded in Y * and A4 is bounded in X

(so that A° is a typical member of the neighborhood base at 0 defining the strong
topology). Then E is equicontinuous by Theorem 4.16(b), so

E.={yeY :|f(y)|<1forall f € E}

() /' (GceF:|c| <1}

feE

is a neighborhood of 0 in Y. But now,

T eN(A E)) & VxeA:T(x) € E,
SVxeAVfeE |fITKX)] <1
SVYfeE: feT(A)°
& ECT(A)° =(T*1(4°) (Thm.5.2)
& T*(E)C A° & T* € N(E, A°).

Hence the map T +— T™* maps N(A, E,) into N(E, A°). O

In the preceding, note that if Y is infrabarreled, then two things happen. In the
first place, looking more closely at Theorem 4.16, the strongly bounded sets in ¥ *
are precisely the equicontinuous sets, so if U is a barrel neighborhood of 0 in ¥ (so
that U = (U®)o), then T +— T™* maps N(A, U) into N(U°, A°). Also, T + T* has
trivial kernel, since Y is Hausdorff (infrabarreled was defined that way!): If 7* = 0,
then forall f € Y*andx € X : f(T(x)) = T*(f)(x) = 0,s0 T(x) = 0 by
Corollary 3.17 (Y* separates points). Since x was arbitrary, T = 0. Thus, T +—
T* is a homeomorphism of %, (X, Y) with its image in Z.(Y™*, X*) when Y is
infrabarreled. The following are left to the exercises: T +— T* is an isometry when
X and Y are normed, and T — T* is bounded whether Y is infrabarreled or not.

There are some more things about 7* that need to be said, but they depend on
some structural results, to be discussed in the next section. These structural results
make use of what has just been established concerning adjoints.
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5.2 Subspaces and Quotients

Suppose X is a locally convex space, and M is a subspace. Then M is a locally
convex space in its own right, and it should be possible to say something intelligent
about its dual space. The same holds for the quotient space X /M . Buried in there
should be a calculation of the dual space of a product space. In fact, all this is true.
One new (sort of—see below) idea is needed.

Definition 5.5. Suppose X is a locally convex space, and M is a subspace. Define
M+ C X* as follows:

M*t={feX*:f], =0}
Similarly, if N is a subspace of X*, define N C X as follows:

Ni={xeX: f(x)=0forall f € N}.

In a sense, the preceding is not needed, since for a subspace M of X and a
subspace N of X*,

M+ = M°and N, = N..

The reason is that if f € X™*, then f(M) is either all of the base field (in which
case f ¢ M°and f ¢ M™) or is 0 alone (in which case f € M° and f €
M+). A similar argument works for N. Consequently, the bipolar theorem already
establishes, for example, that (M 1) = M when M is closed. The main reason for
introducing the “_1” notation is for emphasis. (Not all follow this: Royden [30], for

[TPNL]

example, uses the “o” notation, although he only uses it for subspaces.)

Theorem 5.6. Suppose X is a locally convex space with strong dual X*, and M is
a subspace of X. Equip M with the induced topology, and let M * denote its strong
dual. Let 1 : M — X denote the inclusion map. Then

(a) Algebraically, * : X* — M™ is the restriction mapping f +—> f’M.

(b) 1* : X* — M* is onto, with kernel M~.

(c) The induced algebraic isomorphism (t1*)y : X*/ M+ — M* is a continuous
bijection.

(d) If M is infrabarreled, then (:*);"' - M* — X* /M~ is bounded.

Proof. (a) Forallx € M and f € X*: f(t(x)) = f(x) = f|,,(x). (Yes, that is
all there is to it!)

(b) ¢* is onto by Proposition 3.16, while trivially f ’ uw=0&feM L

(c) ¢* is continuous by Theorem 5.2, so (¢*)g is continuous by Theorem 1.23(c).

(d) Suppose E is bounded in M*. Then E is equicontinuous by Theorem 4.16(b),
since the strong dual has the topology of bounded convergence. In particular,

Eo={xeM:|f(x)|<lforall feE}
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is aneighborhood of 0 in M, so there exists a convex, balanced neighborhood B
of 0in X for which BN M C E,. Let pp denote the support functional for B.
Since B is absorbent, pp is defined on all of X . Since B is convex and balanced,
pp is a seminorm (Theorem 3.7). There are now two cases to consider:

Base field R: Then, forall f € E:

xeBNM=xeckE = f(x)<|f(x)] <1

Hence f(x) < ppnm(x) for x € M by Proposition 3.8. But pgny = pB‘M by
definition, so f(x) < pp(x) for x € M. The Hahn—Banach theorem now extends
f to a continuous linear functional F on X for which F(x) < pp(x). (pp Is
continuous since B is a neighborhood of 0 [Theorem 3.7].) Hence F(x) < 1 for
x € B by Proposition 3.8. But now £F(x) = F(%x) < 1 for x € B since B is
balanced, so | F(x)| < 1 for x € B. Hence F € B°.

Base field C: Then, forall f € E:

X€BNM = xe€ E,= Ref(x) <|f(x)| <1.

Hence (again) Ref(x) < pp(x) for x € M by Proposition 3.8. Again, the
Hahn-Banach theorem extends Ref to a continuous linear functional g : X — R
for which g(x) < pg(x). By Proposition 3.14, there is F € X* for which
ReF = g. Since F|,, and f have the same real parts, they are equal (Proposition
3.14 again). Finally, since ReF(x) = g(x) < pp(x) for x € X, we have that
ReF(x) < 1for x € B by Proposition 3.8. Hence | F(x)| < 1 for x € B since B is
balanced. Thatis, F € B°.

So, in either case, we have, for each f € FE, an extension F to X for which
F € B°. But B° is by definition equicontinuous, hence is bounded (Theorem
4.16(a)). Let 7 : X* — X*/M+ denote the natural map. Since (*(F) = F|M =
f, we have that (t*)o(F + M1) = f, thatis (t*);'(f) = F + M+ € n(B°).
But 7 is continuous, so 7(B°) is bounded in X*/M=. Since 7(B°) D (:*);'(E),
(t*)g 1 (E) is bounded. O

Of course, if X is a Banach space, then all these spaces are normed, hence
first countable, hence bornological, hence infrabarreled, so (:*), !'is continuous for
Banach spaces. This does not happen in general, and similar restrictions hold for
duals of quotients.

Theorem 5.7. Suppose X is a locally convex space with strong dual X*, and M is
a subspace of X. Equip X /M with the quotient topology, and let (X/M)* denote
its strong dual. Let w : X — X /M denote the natural projection. Then:

(a) Algebraically, 7* : (X/M)* — X* is defined by n*(f)(x) = f(x + M).

(b) w* 1 (X/M)* — X* is one-to-one, with image M+

(c) The induced algebraic isomorphism (7*) : (X/M)* — M= is a continuous
bijection.

(d) If X is infrabarreled, then (*);" M+ — (X/M)* is bounded.
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Proof. (a) Forall x € X and f € (X/M)*, by definition 7*(f)(x) = f(w(x)) =
f(x + M). (Again, that is all there is to it.)

(b) 7*(f) = 0 when f(x + M) = 0 for all x € X, that is only when
f = 0,s0 7* is one-to-one. By the usual business for homomorphisms [and
Theorem 1.23(c)], a continuous linear functional on X /M corresponds directly
[via the formula in part (a)] to a continuous linear functional on X which
vanishes on M —that is, to a member of M +. Hence M = is the image of 7*.

(c) m* is continuous by Theorem 5.2, so (7*)g is continuous (Proposition 1.21).

(d) Suppose E is bounded in M L. Then E is bounded in X *, hence is equicontin-
uous by Theorem 4.16(b). Hence E, is a neighborhood of 0 in X . Hence 7 (E,)
is a neighborhood of 0 in X /M by Proposition 1.26(b) since 7 : X — X/M is
an open map (Theorem 1.23(b)). Thus, (7 (E,))° is equicontinuous, hence is
bounded (Theorem 4.16(a)), in (X/M)*. It therefore suffices to show that
(7*)5"(E) C (w(E,))°. This is basically a matter of unraveling the notation.

Suppose f € (n*);1(E). Thenw*(f) = (7*)o(f) € E.Nowif x € E,, so that

X+ M = m(x) € mw(Es), then |7*(f)(x)| < 1by definition of E,. That is, by part

(@):|f(x+M)| < 1. Thatis, | f(x + M)| < 1 whenever x + M = n(x) € n(E,).

Hence by definition, f € (7 (E))°. O

Finally, the situation for direct products is much more satisfactory, due to a
category theoretic construction, known as a biproduct.

Lemma 5.8. Suppose X1, X, and Y are locally convex spaces, and suppose there

are continuous linear maps

Xy =Y, k=12, and
Y > X, k=1,2
subject to

(i) mxtr = identity on Xy, and
(ii) vy + = identityon Y.

Then:

(a) mat1 : X1 — X, is the zero map,

(b) mitr 1 Xo — X is the zero map, and

(c) ® = (m,m) 1 Y = X| X X, is atopological isomorphism. Its inverse is given
by (x1,x2) = t1(x1) + ta(x2).

Proof. First of all, since my( is the identity, it is a bijection, so my is onto and ¢ is
one-to-one. But now
tr = (L + Lm)y
= 11(mt1) + 2(matr)

=11 + 1r(m2ty) (since ity = id.)
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Hence t;(mt1) = 0, so ¢ = 0 since ¢; is one-to-one. This proves part (a). Part
(b) is immediate by exchange: 1 <> 2.

For part (c), the idea is to show that if one defines ¢ : X;x X, — Y by t(xy, xp) =
11(x1) 4 t2(x32), then both & and ¢ are continuous, and are inverse to each other. This
will complete the proof.

Continuity of & : immediate from Theorem 1.18.

Continuity of ¢ : We have continuity of

(x1,x2) = x1 — 11(x1) and
(x1,Xx2) > X2 > 12(x3), SO
(x1,x2) = (1(x1), 2(x2)) = 11 (x1) + t2(x2)
Xix X > ¥ xyY 0y
is continuous.
7 ot is the identity:
mot((x1,x2)) = w(ti(x1) + t2(x2))
= (m(u(x1) + (x2)), m2(u(x1) + ©2(x2))
= (mu(x1) + ma(x2), mau(x1) + maa(x2))

= (x;1 + 0,0+ xp)
t o «r is the identity:

tom(y) = t(m(y), m2(y))

=ym(y) + m(y) = y. O

Theorem 5.9. Suppose X| and X, are locally convex spaces. Then (X x X3)* is
topologically isomorphic to X{* x X, where any (f, g) € X" x X} corresponds to
the linear functional (x1, x3) — f(x1) + g(x2).

Proof. We have natural maps
Lk © Xk — Xl X Xz

given by ¢;(x;) = (x1,0) and t2(x2) = (0, x2). We also have natural projections
7y : (X1 X X2) = Xk, and these satisfy the equations

it = identity on X7,

Tyt = identity on X,, and

11 m ~+ 1, = identity on X; x X5.



130 5 Dual Spaces

Taking adjoints:
(i 7{ = identity on X",
;) = identity on X, and
7} + 55 = identity on (X X X»)*.
Hence (with pi and iota reversed), (X; x X»)* ~ X[ x X} by Lemma 5.8. O

In case you are curious: Yes, the dual of a product was deferred until now so
that the adjoint maps above would be available to trivialize matters. Also, some of
the preceding results generalize to spaces of linear transformations. There is even a
generalization of Theorem 5.9 for infinite products: The dual of an infinite product
is the direct sum of their duals—but with the box topology. This may come as a
surprise: After all, the algebraic dual of a direct sum is a direct product, while
the algebraic dual of a direct product is HUGE: It contains functionals with no
simple coordinate formula, a fact easily deduced from the fact that there must exist
linear functionals on the direct product which vanish on the direct sum. However,
for topological duals, the product topology is so coarse that the dual of a product
is severely constrained. The basic generalizations discussed here appear in the
exercises: none are particularly difficult, given the methods discussed in this section.

5.3 The Second Dual

Any locally convex space X has a dual space X*, and X™* is most naturally
topologized using the strong topology. Consequently, X * becomes a locally convex
space, and so has a dual of its own, X **. In textbooks, X** is commonly called
the bidual when the book discusses general spaces, and is often called the second
dual when the subject is Banach spaces. The discussion here will sometimes
make reference to X *** as well, and “third dual” is slightly more descriptive than
“tridual.” Consequently, in what follows, X ** will be referred to as the second dual.

One more thing. In order to properly discuss the natural map from X to its second
dual, it will be necessary to assume that X is Hausdorff, so for the remainder of this
section all locally convex spaces under discussion will be assumed to be Hausdorff.

Suppose X is a locally convex space, and x € X. Then the evaluation map
f = f(x) is weak-* continuous on X*, hence is strongly continuous. It is also
linear; all this came up in Sect. 3.6, Corollary 3.23. As such, we may associate with
x an element Jy (x) € X** defined by the equation

Jx()(f) = f(x).

(By the way, there is no standard notation for the map Jyx. The letter J is used by
Yosida [41], and works well here.)
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Theorem 5.10. Suppose X is a Hausdorff locally convex space, and Jx : X —
X** is the natural map from X to its second dual. Then:

(a)
(b)
(c)
(d)

Jx is linear and one-to-one.

IfE C X* then Jx(E.) = E° N Jx(X) and Jy'(E®) = E..
Jx is bounded and J;l : Jx(X) — X is continuous.

Jx is continuous if, and only if, X is infrabarreled.

Proof. (a) Jy is linear because the functionals to which it is applied are linear:

(b)

©

(d)

Jx(ex)(f) = flex) = cf(x) = cJx(x)(f) and
Jx(x+y)(f) = fx+y) = fO)+ f(y) = Ix()(f) + Ix ().

Jx is one-to-one because its kernel is zero: If Jx(x) = 0, then f(x) = O for
all f € X*, giving that x = 0 (Corollary 3.17).

Suppose ¢ € X**. Then ¢ € E° if, and only if, |¢(f)| < 1forall f € E.If
¢ = Jx(x), then p(f) = f(x), so

9 €E° & |f(x)|<lforall f € E & x € Eo.

This proves both parts.

If B is bounded in X, then E = B° is a neighborhood of 0 in X*, so that E° is
equicontinuous in X**, hence is strongly bounded in X ** [Theorem 4.16(a)].
But B C (B°)o = Es, 30 Jx(B) C Jx(E,) C E°, which is bounded. If U is
barrel neighborhood of zero in X, then (J3)™!(U) = Jx(U) in Jx(X), and
since U = (U®), by the Bipolar Theorem, setting £ = U° gives

Jx(U) = Jx(Eo) = E° ) Jx(X).

by part (b). Now U is a neighborhood of 0, so E is equicontinuous, hence is
strongly bounded in X * [Theorem 4.16(a) again]. Hence E° is a neighborhood
of 0in X**.

Suppose X is infrabarreled, and E is strongly bounded in X*. Then E° is a
typical base neighborhood of 0 in X**, and J;'(E®) = E, by part (b). But
E is equicontinuous by Theorem 4.16(b), so that E, is a neighborhood of zero
in X. Finally, suppose Jy is continuous. Suppose B is a barrel in X which
absorbs all bounded sets A. Set E = B°; then E, = B by the bipolar theorem.
Furthermore, E, absorbs A whenever A is bounded, so A° absorbs £ whenever
A is bounded [Theorem 3.20(e)]. That is, E is strongly bounded, so E° is a
neighborhood of zero in X**. Hence B = E, = J;!(E®) is a neighborhood
of zeroin X. O

Definition 5.11. Suppose X is a locally convex space. Then X is semireflexive
if Jy : X — X* is onto. X is reflexive if Jy : X — X** is a topological
isomorphism.
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Of course, in view of Theorem 5.10, a space is reflexive if, and only if, it is
semireflexive and infrabarreled. Somewhat more can be said, though. This requires
a few more results.

Proposition 5.12. Suppose X is a semireflexive, Hausdorff locally convex space.
Then X * is barreled.

Proof. Suppose E is a barrel in X*, so that E is strongly closed, convex, balanced,
and absorbent. The fact that Jy : X — X™* is bijective says that the weak and
weak-* topologies on X * coincide, and E is weakly closed (Theorem 3.29), hence
is weak-* closed. Hence £ = (E,)° by the bipolar theorem. Set A = E., so that
E = A°.

If F C X*, with F finite, then E absorbs F since E is a barrel. That is, A°
absorbs F, so F, absorbs A (Theorem 3.20(e)). That is, 4 is bounded in the weak
topology on X, and so is originally bounded (Corollary 3.31). Hence E = A° is a
standard base neighborhood of zero in X *. O

Before our next result, we need a pure (but weird) computation.

Lemma 5.13. Suppose X is an infrabarreled, Hausdorff locally convex space, so
that Jx : X — X™** has a continuous adjoint J§ : X*** — X*. Then J§ o Jx+ is
the identity map on X*.

Proof. Suppose f € X*, and Jx«(f) = @.If x € X, then set ¥y = Jx(x). By
definition:

T3 (@)(x) = ¢(Jx(x)) = (V)
= Jx«(HW) =v(f)
= Jx()(f) = f(x).

Since x was arbitrary, f = J§(®) = J5 o Jx=(f). .

Proposition 5.14. Suppose X is a reflexive Hausdorff locally convex space. Then
X* is also reflexive.

Proof. By assumption Jy : X — X™* is a topological isomorphism with inverse
Jyt i X* > X,so J§ 0 X*** — X* is a topological isomorphism with inverse
(J¢H* : X* — X*** But Lemma 5.13 computes Jy+ as a right inverse for J3, so
Jx+ is (J3'1)*, a topological isomorphism. O

Corollary 5.15. Suppose X is a semireflexive Hausdor{f locally convex space. Then
the following are equivalent:

(i) X is reflexive.
(ii) X is infrabarreled.
(iii) X is barreled.
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Proof. (iii) = (ii) trivially, while (ii) = (i) by Theorem 5.10. Suppose (i): that is,
suppose X is reflexive. Then X * is reflexive by Proposition 5.14, so X ** is barreled
by Proposition 5.12. Hence X is barreled since X is topologically isomorphic to
X** by assumption. O

For Banach spaces, Proposition 5.14 is an if-and-only-if. Not so in general; think
of using a dense subspace of a reflexive space as the original space. However, some
things can be said. Here is a start.

Proposition 5.16. Suppose X is a Hausdorff locally convex space. Then X is
semireflexive if, and only if, bounded, closed, convex subsets of X are weakly
compact.

Proof. First, suppose X is semireflexive, and B is bounded, closed, and convex
in X. Then B C (B°)., and (B°), is weakly closed, convex, bounded, and
balanced. Set E = B°; then E is a strong neighborhood of zero in X*, so E°
is weak-* compact in X ** by Theorem 3.26. Since Jy is a bijection of X with X **,
Theorem 5.10(b) (applied to finite sets) gives that J !'is an isomorphism of (X **,
weak-* topology) with (X, weak topology). Since J;'(E°) = E, D B, and B is
weakly closed: B is weakly compact.

Finally, suppose every closed, bounded, convex subset of X is weakly compact.
The strong topology on X™* consists of taking the polars of bounded sets B, and
B° = ((B°),)° by the bipolar theorem. But (B°), is weakly closed, convex, and
bounded, so it is weakly compact. Thus, in fact, the strong topology on X* is
produced by taking polars of all weakly compact, convex subsets of X (since weakly
compact = weakly bounded = bounded). This just gives the Mackey topology for
X* under the restriction that X [more literally, Jx (X)] is its dual space. Hence the
dual of X* is Jx (X) by Proposition 3.27. O

Corollary 5.17. Suppose X is a Hausdorff locally convex space, and suppose X *
is semireflexive. Then X is infrabarreled if, and only if, X is a Mackey space.

Proof. Infrabarreled spaces are Mackey spaces by Corollary 4.9, so suppose X is a
Mackey space and X * is semireflexive. If D is strongly bounded in X*, then £ =
(D°), is also strongly bounded, as well as weakly closed, convex, and balanced, so
E is weakly compact in X * by Proposition 5.16. Hence E is weak-* compact in the
(coarser) weak-* topology on X*, so E, is a Mackey neighborhood of zero in X.
But J;y!(E°) = Eo, and E° = D° by the bipolar theorem, so since D° is a typical
strong neighborhood of zero in X **, Jy is continuous. Hence X is infrabarreled by
Theorem 5.10(d). O

The next result gives a (partial) converse to Proposition 5.14.

Proposition 5.18. Suppose X is a Hausdorff locally convex space and suppose X
is a quasi-complete Mackey space. Finally, suppose X* is semireflexive. Then X
and X* are both reflexive.
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Proof. Since X* is semireflexive and X is a Mackey space, Jy : X — Jx(X) is
a topological isomorphism by Corollary 5.17 and Theorem 5.10(d). Hence, in view
of Proposition 5.14 (X is reflexive = X™* is reflexive), it suffices to show that J is
onto.

Suppose @ € X**. Choose a typical neighborhood E = B° of zero in X* (with
B being bounded) for which |@(f)| < 1 when f € E. That is, suppose @ € E°.
Since E = B° = ((B°)o)° (bipolar theorem), we can replace B with (B°).,
and thereby assume that B is closed, convex, and balanced, as well as bounded
(Theorem 3.20(d)). This means that B is complete, since any Cauchy net in B is
bounded, hence is convergent (since X is quasi-complete) to an element of B (since
B is closed). Thus, Jx (B) is complete in X ** since Jy is a topological isomorphism
with its image, so Jy (B) is strongly closed in X **. Since Jyx (B) is also convex:
Jx (B) is weakly closed in X **. Since we are assuming that X * is semireflexive, the
weak and weak-* topologies coincide on X **, so Jy (B) is weak-* closed, convex,
and balanced in X **. Hence Jx (B) = (Jx(B),)° by the bipolar theorem applied
to (X**, weak-* topology). But practically by definition, Jx(B)o = B° = E, so
Jx(B) = E°.But® € E°,s0 ® € Jx(B) C Jx(X). Since @ was arbitrary, Jy is
onto. O

The next section will be concerned with a large class of spaces that are (among
other things) reflexive.

5.4 Montel Spaces

Montel spaces are just about as far from being Banach spaces as you can get: A
Banach space which is also a Montel space is necessarily finite-dimensional; see
Exercise 8. However, Montel spaces do have a rich (and very useful) structure.

Definition 5.19. Suppose X is a Hausdorff locally convex space. X is called a
Montel space when X is barreled; and closed, bounded sets are compact (original

topology).
The next result sheds some light on the origin of the terminology.

Theorem 5.20 (Montel’s Theorem, from Complex Analysis). If U is a region in
C, then the Fréchet space 7 (U), consisting of holomorphic functions on U, is a
Montel space.

Remark. 5¢(U) is Example III at the end of Sect. 3.7.

Proof. Suppose C is a closed, bounded subset of .7 (U). Since #(U) is metriz-
able, it suffices to show that any sequence ( f,) from C has a subsequence that
converges to a function in C. But all seminorms are bounded on C (Corollary 3.31),
so ( f,) is uniformly bounded on compact sets, hence has a convergent subsequence
by the “classical” version of Montel’s theorem. The limit of that subsequence then
belongs to C since C is closed. O
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In fact, among the examples given at the end of Sect. 3.7, Examples I, III, IV,
and V are Montel spaces, as are Examples I and III at the beginning of Sect. 3.8
(LF-spaces). See the exercises.

As noted at the end of the last section:

Proposition 5.21. Montel spaces are reflexive.

Proof. Suppose X is a Montel space, and suppose C is a weakly bounded, closed,
convex subset of X. Then C is originally bounded (Corollary 3.31), and originally
closed (the original topology is stronger), hence is originally compact since X is
a Montel space. That means that C is weakly compact since the weak topology
is weaker. Letting C float, X is semireflexive by Proposition 5.16. But now X is
reflexive by Corollary 5.15. O

To proceed, we need a lemma that is just too interesting to be called a lemma.
(We will also need it in Chap. 6.)

Proposition 5.22. Suppose X and Y are Hausdorff locally convex spaces, and
suppose (Ty : o € D) is a net in £.(X,Y) that has the following properties:

(a) Thereisa T € Z.(X,Y) for whichlimT,(x) = T(x) forall x € X, and
(b) {Ty : o« € D} is equicontinuous.
Then Ty — T uniformly on compact sets.

Proof. Suppose K is compact in X and U is a barrel neighborhood of 0 in Y. Set

= (0 () e ()

Then V is a barrel neighborhood of 0 in X since {T,, : « € D} is equicontinuous.
The set {x + intV : x € K} is an open cover of K, so there exists xi,...,x, € K
such that

n

K c |Jej +in(v)) c | J&x; + V).

Jj=1 =1

Using the fact that D is directed [along with assumption (a)], choose « € D such
that B > o = Tg(x;) — T(x;) € 2U for j = 1,...,n.

Suppose x € K and B > «. Then there exists j such that x —x; € V, so that
Tg(x—xj) € %U and T'(x—x;) € %U.Then T(x;—x)€ %U since U is balanced,
and Tg(x;) — T(x;) € %U since B > «. Hence

Tg(x) =T (x) =Tg(x —x;) + Tp(x;) =T (x;) +T(x; —x)
1 1 1
-U+-U+-U=U
€37 T30 T3

since U is convex and 0 € U (Proposition 3.3). O
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We can now prove:
Theorem 5.23. The strong dual of a Montel space is another Montel space.

Proof. Suppose X is a Montel space. Then X* is barreled since X is reflexive
(Propositions 5.12 and 5.21). It remains to show that closed, strongly bounded
subsets of X* are strongly compact.

Suppose C is a strongly closed, bounded subset of X *. Then C is equicontinuous
by theorem 4.16(b), so C, is a neighborhood of 0 in X, and so (C,)° is weak-*
compact by Theorem 3.26. Since C is strongly closed in (Cs)°, it suffices to show
that (C,)° is strongly compact. To do this, it suffices to show that

((Co)°, weak-* topology) — ((Cs)°, strong topology)

is continuous. This is done using nets (and Proposition 5.22).

Suppose (fy : @ € D) is a net in (C,)° that converges to f € (C,)° in the
weak-* topology. Then { f, : @ € D} is contained in (Cs)°, and so is equicontinuous
since ((Cs)°®)o = C, is a neighborhood of 0. The fact that f, — f in the weak-*
topology now verifies all the hypotheses in Proposition 5.22, so f, — f uniformly
on compact subsets of X.

Suppose B is bounded in X. Then B~ is closed and bounded, hence is compact
since X is a Montel space. Hence f, — f uniformly on B~,so f, — f uniformly
on B, so there exists « such that 8 > o = | fg(x) — f(x)| < 1 whenever x € B.
Thatis, 8 > o = fg— f € B°.

The preceding verifies that f,, — f in the strong topology, by letting B vary.
Hence

((Co)°, weak-* topology) — ((Cs)°, strong topology)

is continuous by Proposition 1.3(c). O

We close this section with an interesting, and easy-to-prove result that has some
unusual applications. See Atiyah-Bott [1] for such an application.

Proposition 5.24. Suppose X is a Montel space, and B is a bounded subset of X .
Then the original topology and the weak topology coincide on B.

Proof. Tt suffices to show that
(B~, original topology) — (B~, weak topology)

is a homeomorphism. But this arrow is continuous; the space on the left is compact;
and the space on the right is Hausdorff. Hence this arrow is a homeomorphism by
standard results in point-set topology. (It maps compact sets to compact sets, so it
maps closed sets to closed sets. This checks continuity of its inverse.) O
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5.5 Compact Convex Sets

Montel spaces provide a rich source of compact convex sets, but so do weak-*
topologies. The structure of such sets can often be exploited in unexpected ways.
The two main results of this section are the Krein—Milman theorem and a version of
the Kakutani fixed point theorem. An application of each will be outlined.

Suppose X is a Hausdorff locally convex space, and K is a compact convex
subset of X. A point p € K is called an extreme point if p does not lie internal to
aline segment in K. Thatis: If p = tx + (1 — 1)y, withx,y € Kand0 <t < 1,
then p = x = y (so that the “line segment” between x and y reduces to a point).

Example. The extreme points of a disk constitute the boundary circle. The extreme
points of a convex polygon are its vertices.

Note that the definition of an extreme point does not involve the topology. This
matters in many applications. However, in the proof of the Krein—-Milman theorem,
we will have to consider more general sets, and the topology does arise for them.

Again, suppose X is a Hausdorff locally convex space, and K is a compact
convex subset of X. A closed convex subset £ of K will be called a supporting
subsetif p e E,p =tx+ (1—1¢t)y withx,y € Kand 0 < ¢ < 1 implies that
x,y € E. Thatis, if E contains an internal point of a line segment in K, then E
contains the endpoints (and so, being convex, contains that entire line segment). If
p is an extreme point, then { p} is a supporting subset, but there are plenty of others:
K itself is a supporting subset, and the sides of a convex polygon are supporting
subsets.

The Krein—Milman theorem can be proven by assembling a number of lemmas,
none of which is particularly difficult. (This approach is due to Kelley.) As in the
discussion of the properties of LF-spaces, it is easiest to simply list them as facts. In
all that follows, X is a Hausdorff locally convex space over R, and K is a nonempty
compact convex subset of X.

1. If E is a supporting subset of K, and F is a supporting subset of E, then F is a
supporting subset of K.

IfpeF,andp=tx+(1—t)yforx,y e Kand0 <t < 1,then p € E (since
F C E)sothat x,y € E (since E is a supporting subset of K). Thus, x,y € F
since F' is a supporting subset of E.

2. If {Ey : « € </} is any nonempty family of supporting subsets of K, then (| Ey
is a supporting subset of K.

If pe(Es,and p =tx + (1 —t)yforx,y € Kand 0 < ¢t < 1, then for all
a:pe E, sothat x,y € E, (since E, is a supporting set). Hence x, y € () E,.
Finally, () E, is closed.

3.If f € X*, and M = max f(K), then {x € K : f(x) = M} is a supporting
subset of K.
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Ifpek, f(p)=M,andp =tx+(1—1t)ywithx,y e Kand0 <t < 1,
then f(p) = tf(x) + (1 — 1) f(y). If either f(x) < M or f(y) < M, then
tf(x) + (1 =) f(y) < M since f(x) < M and f(y) < M. Hence f(x) =
f(y) = M. Finally, the set is trivially closed.

4. If K consists of more than one point, then K contains a proper nonempty
supporting subset.

Just take an f € X* that is not constant on K, and apply Fact 3.

5. A minimal (under set inclusion) nonempty supporting subset of K has the form
{p}, for an extreme point p.

If E is a supporting subset that consists of more than one point, then E has a
proper nonempty supporting subset F' by Fact 4, and this F' will be a (smaller)
nonempty supporting subset of K by Fact 1.

6. K has an extreme point.

Let
& = {E C K : E is a nonempty supporting subset of K},

and partially order & by (reverse) set inclusion. The set K € &, so & is nonempty.
If {Ey : @ € &/} is a nonempty chain in &, then E = (") E, is a supporting set by
Fact 2, and E is nonempty since K is compact. Zorn’s lemma now says that & has
a minimal element, which has the form {p} for an extreme point p by Fact 5.

Theorem 5.25 (Krein-Milman). Suppose X is a Hausdorff locally convex space
over R, and K is a compact convex subset of X. Then K is the closed convex hull
of its set of extreme points.

Proof. Let L denote the closed convex hull of the set of extreme points of K. Then
L is closed and convex, and L C K, so L is compact. Suppose p € K — L. Then
there exists f € X* and ry € R for which f(x) < rowhenx € L, and f(p) > ro,
by Proposition 3.12. Let M = max f(K). Then M > ry. Set E = {x € K :
f(x) = M}. Then E is a nonempty supporting set in K, so E has an extreme point
q by Fact 6. But now {g} is a supporting subset of £, and so is a supporting subset of
K by Fact 1. Hence ¢ is an extreme point of K, so that g € L. But this is impossible,
sinceq € E = f(q) =M >ry> f(x)whenever x € L. Hence K = L. O

Remark. In some cases, the Krein—-Milman theorem can be generalized. See Phelps
[28] for a discussion of this.

Application: The Stone—Weierstrass Theorem: R version: Suppose X is a
compact Hausdorff space, and <7 is a subalgebra of C(X) that separates points;
that is, if x # y in X, then there exists f € o/ such that f(x) # f(v). Then o is
either dense in C(X), or o/~ ={f € C(X) : f(p) = 0} for some p € X.
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Proof Outline: To start with, suppose / is an ideal in C(X).Let A = {x € X :
f(x) =0forall f € I}.1f B is closed and disjoint from A, then for all x € B there
exists f € I s.t. f(x) # 0. Choose suchan f,andset V, ={y € X : f(y) # 0}.

These V. cover B, so since B is compact, there exists xj---x, such that
B c UV ;- Letting f; denote the function chosen for x;, X~ sz belongs to 1, is
nonnegative, and is strictly positive on B. Let m be the minimum value of ¥ sz on

B, and set g(x) = max(m, X sz(x)). Then g is continuous on X and is strictly
positive. Hence

1 n
h(x) = —— 2
(x) g(x);f,(x)

belongs to I since é belongs to C(X) and [ is an ideal. This /(x) is easily checked
to be a Urysohn function which is 0 on 4 and 1 on B, and has values in the interval
[0, 1]. Finally, if f € C(X) and f vanisheson A4, set B, = {x € X : | f(x)| > %},
and choose a Urysohn function g, € I whichis O on 4 and 1 on B,,, with values in
[0, 1]. Then it is easily checked that || f — fg,|| < %, and fg, € I,sothat fg, — f
and f € I~. Put together, this shows that /= = {f € C(X) : f\A = 0}. In
particular, all closed ideals in C(X) have this form for some closed subset A C X.

Now suppose .¢7 is not dense in C(X). Let K denote the intersection of .7 with
the closed unit ball in X*; K is weak-* compact and convex. Let ¢ be an extreme
point of K. Then ||¢|| = 1 since &7+ # {0}.

If f € C(X),define s by pr(g) = ¢(fg). ¢y € ZLif f € of since & is an
algebra; also, . € </ if ¢ is constant. Note that ¢, s = cgy if ¢ is constant, and
@r+g = @1 + @g since ¢ is linear. Suppose g € 7. Choose M > |/ g||; then

$= 0= 0y T PGy 2
ol = oy )l + ozl -

2 2M

The reason for the latter is that % (1££)=>0,and

o/l = [X \f1dul

when the signed measure u represents ¢. (The Riesz representation theorem is used
here.) Butif o = ¥ +nand ||¢|| = [|¥| + |||, with ¥, n € &/, then either ¥ = 0
and ¢ = n,n=0and ¢ = ¥, orn # 0 # . In the latter case, set Yo = ¥/|¢|,
no = n/lnll, and r = |l¢||. Then ¢ = 1y + (1 — 1)no with Yo,n0 € K, so
that Yy = 1o = ¢ since ¢ is an extreme point. In all cases, ¢ and n are scalar
multiples of ¢. Unraveling (p-sub-(% + %g/M), ¢s = c(g)p for some scalar c(g)
when g € .
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Now let / = {g € C(X) : ¢y = 0}. Then [ is a closed proper ideal in C(X)
(easy check),so I = {f € C(X): f\A = 0} for some closed set A C X . However,
if f e, then f—c(f)el,so f(a)=c(f)foralla € A. Since o7 separates
points, A = {p} consists of one point, so I = {f € C(X) : f(p) = 0}. Since
C(X)/I is one-dimensional and ¢ vanishes on I, ¢ is &+ evaluation at p. Since ¢
vanishes on .27, every function in .7 vanishes at p. Since <7 separates points, this p
is unique, so £¢ are the only extreme points of K. By the Krein—-Milman theorem,
K =[-1,1]p, ot =Rgp,and &~ = {f € C(X) : f(p) = 0}. O

This approach is due to de Branges [8]. C-version: Suppose X is a compact
Hausdorff space, and <f is a *-subalgebra of C(X), here denoting continuous
complex-valued functions on X, while x-subalgebra denotes a subalgebra <7 for
which [ € o = f* € of, where f*(x) = f(x). If & separates points, then <f
is either dense in C(X), or o/~ = {f € C(X) : f(p) = 0} for some p € X.

Proof Outline: Let o = {f € & : f isreal-valued}, and Co(X) = {f €
C(X) : fisreal valued}. If f € <7, then Ref = %(f + f*) and Imf =
%( f* — f) belong to %, so 4 is a subalgebra of Cy(X) that separates points.

Hence by the R-version, <7, is either Co(X) (in which case &/~ = C(X))
or &, = {f € Co(X) : f(p) = 0} for some p € X (in which case
o~ ={feCX): f(p)=0). 0

Example 1. X = closed unit disk in C, and
o ={f € C(X): f is holomorphic on int(X)}.

4/ is a closed subalgebra in C(X) that separates points, is not dense, and has no
common zero; but .27 is not a x-subalgebra,

The following result is useful in several applications of the Krein—Milman
theorem, including the Kakutani fixed-point theorem.

Proposition 5.26 (Milman). Suppose X is a Hausdorff locally convex space, and
K is a compact subset of X with a closed convex hull con(K)~ that is also compact.
Then all extreme points of con(K)~ belong to K.

Proof. Suppose not; suppose p is an extreme point of con(K)™ that is not in K.
Let U be a barrel neighborhood of 0 for which (p + U) () K = @. The set of all
x + int(U), with x € K, covers K. Hence there exists x; ---x, € K for which
K C U(xj + intU) since K is compact. Set A; = con(K (\(x; + U))~, a closed
convex subset of con(K)™. Thus each A; is compact. If C and D are compact and
convex, then con(C | D) is compact by Proposition 2.14 (with I = [0, 1]), since
con(C | D) is a continuous image of C x D x I, a compact set. Hence by induction
onn, con(A; U---U A4,) is compact. It also contains K, so con(4; U---U A,) D
con(K)~. Thus, p € con(4, U---U A,). Write p = ) t;a; fora; € A; and
0<t; <1, t; =1.If0 <t; <1,then

1
l—lj

ai;

p =tja; +(1—tj)z
i#j
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so that p = a; since p isextreme and alla; € A; C con(K)™. Ift; = 1, then all
othert; =0and p = a;.Inallcases, p = a; € A; forsome j,since ) t; = 1=
some ¢; > 0. But x; + U is closed and convex, so 4; = con(K (\(x; + U))~ C
x; + U. This means that p € x; + U, giving p —x; € U,sothatx; — p €e U (U
is balanced) and x; € p + U.But thismeans that x; € (p + U)K = 0. O

Corollary 5.27 (Kakutani). Suppose X is a Hausdor{f locally convex space, and
suppose K is a nonempty compact convex subset of X. Suppose & is a group of
invertible members of Z.(X, X) with the property that for all x € X, Y -x =
{T(x): T €9} is compact. Finally, suppose that T(K) C K forall T € 4. Then
there exists x € K suchthat T (x) = x forall T € 4.

Remark. Such an x is called a fixed point of 4.
Proof. Let

9P9={ECK:E#0,ECK,Eis
closed and convex, and T(E) C E for
all T € ¥4,

K € 2,50 2 is nonempty. If € is a nonempty chain in 2, then (¢ € 2: The
intersection is nonempty since K is compact, while the intersection is closed and
convex and ¢-invariant: If x € (€, thenforall E € € : x € E.If T € ¢, then
T'(x) € E. This holds for all E € €, so T(x) € ()% . The preceding shows that &
has a minimal (under set inclusion) element E by Zorn’s lemma.

Suppose x € E.Then¥ - x = {T(x) : T € ¥} is compact and contained in
E, socon(¥ - x)~ C E since E is closed and convex. Since ¢ is closed under
composition and consists of linear transformations, ¢ preserves con(¥ - x):

T(Etj T](.X)) = Elj (TT])(.X)

Finally, since ¢ is group, each T' € ¢ is a homeomorphism, so T(A™) = T(A)~
for any set A. In particular, 7'(con(¥ -x)~) = T'(con(¥ - x))~ C con(¥ -x)~. What
all this shows is that con(¥ - x)~ € 2. But we also know that & - x C E, so that
con(¥-x) C E (since E is convex) and con(¥ - x)~ C F (since E is closed). Since
E is minimal, £ = con(¥ - x)~.

Suppose x,y € E. Setz = %x + %y. Then E = con(¥ - z)~. E has an extreme
point (Krein—-Milman) that belongs to ¢ - z since ¢ - z is compact (Proposition 5.26).
But T (z) = %T(x) + %T(y), so T(z) = T(x) = T(y) when T(2) is extreme.
Applying T~!, x = z = y. Since x and y were arbitrary in E, E must consist of
one point. Since 7 (E) C E, that point is a fixed point. O

Remark. A more general version is Theorem 5.11 of Rudin [32].

Application. Haar Measures for Compact Hausdorff Topological Groups.
Suppose G is a compact Hausdorff topological group. Then there exists a Baire
measure (L on X for which p(G) = 1, and un(xE) = p(E) for all Baire sets E
and x € G.
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Proof Outline: Let X = C(G), real-valued continuous functions on G. The
locally convex space to work with is X*, which corresponds (under Riesz repre-
sentation) to signed finite Baire measures on G. The set K is the subset of X*
corresponding to positive measures p for which (G) = 1. This is easily checked
to be a closed convex subset of the closed unit ball in X *, and so is weak-* compact.
To define ¢, if x € G define n(x) € .Z.(X, X) as follows:

() () = f(x71y). Then
()7 (y) )2 = [x() (@ (y) )]E)
= (@M HE) = a7
= f((x»)™'2) = (2(x») )(@),

so m(xy) = m(x)m(y). Each m(x) is easily checked to be an isometry onto with
inverse 7(x~!), so each m(x) is continuous. 4 = {x(x)* : x € G} is now a
group, and a ¥-fixed point in K is easily checked to be a Haar measure. (Each
7(x)* is continuous when X* has the weak-* topology thanks to Theorem 5.2.)
7(x)*K C K when x € G, so the existence of a Haar measure will follow once
it is shown that for all ¢ € X™*, 4 - ¢ is compact. This follows from the fact that
g — 7(g)* ¢ is continuous from G to (X *, weak-* topology).

To see this, for the usual reasons involving subbases, it suffices to show that if
f € C(X), then there exists a neighborhood V of 1 in G for which

[(r(x)*¢ —@)(f)| < 1whenx €V, sothat (x)*¢ —¢@ € {f}°.

But (m(x)*¢)(f) = ¢(m(x) f), so this reads “|p(w(x) f — f)| < 1.” To do this, it
suffices to show (since ¢ is bounded) that given ¢ > 0, there is a neighborhood V' of
1 in G such that |7 (x) f — f|| < e when x € V. This is really uniform continuity
for f.

Define g : G x G — R by

g, y) = f(x7'y) = ().

g is continuous, and g(1,y) = O forall y € G. For all y € G, there exist open
neighborhoods V), of 1 and W, of y for which

|g(x,z)| < ewhen (x,2) € V, x W,

since g is jointly continuous at (1,y). The sets W), cover G, so there exists
Vi,....yn for which G C JW,,.Set V = (V,,.If y € G and x € V, then
there exists k for which y € Wy.. But x € V, so |g(x, y| < . Hence |g(x, y)| < &
whenever x € Vand y € G. O

Haar measures here are defined to be left invariant. For compact groups, they are
also right invariant, but this does not hold for more general locally compact groups.
For a discussion of all this (including a version of uniqueness of Haar measures),
consult any good book about locally compact groups.
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5.6 Ptak’s Closed Graph Theorem

A closed graph theorem has already appeared in Sect. 4.5, with the hypotheses that
the domain space is barreled and the range space is a Fréchet space. The assumption
about the range space is particularly restrictive; there should be (and there is) some
way to generalize it. The subject of this section is to see how this can be done using
dual spaces. Before proceeding, however, it seems worthwhile to verify that the
hypothesis imposed on the domain space (i.e., “barreled”) really is the right one.
The next result does that.

Proposition 5.28 (Mahowald). Suppose X is a Hausdorff locally convex space
with the following property:
Whenever Y is a Banach space, and T : X — Y is a linear map with
closed graph, then T is necessarily continuous.
Then X is barreled.

Proof. Let B be a barrel in X, and let pp denote its Minkowski functional. Let M
denote the kernel of pp:

o0
M ={xeX: pg(x) =0} ﬂlB.
n=1 n
Note that M is a closed subspace, since the intersection on the right is closed. Also,
pp is a seminorm, which induces a norm on X/M. Let Y denote a completion
of X/M.

Note: One can embed any normed space Z in a completion simply by using the
closure of Jz(Z) in Z**. For clarity, it helps to pretend that X /M above is literally
a subspace of Y. See the end of Appendix A for a mechanism that can be used to
carry this out.

This Y is a Banach space. Let T : X — Y be defined in the obvious way:
T(x) = x + M, so that the graph I'(T) of T is

I'T)y={(x,x+M)e X xY :x e X}.

This T is linear. It also has closed graph:

Suppose ((xq, Xo + M) : @ € D) is anetin I'(T) that converges to (x,y) €
X x Y. Then x, — x in X, and (x, + M) is a Cauchy net relative to the norm
ps; thatis, (x,) is a Cauchy net relative to the seminorm pg. For each n, choose
an € Dsothat B,y > oy = pp(xg—x,) < =.Then B,y > oy = X3 —x, € - B
by Theorem 3.7.

Suppose B > «,. If U is any convex, balanced neighborhood of 0 in X, choose
8 € Dsuchthaty > § = x, —x € U. Next, choose y > § and y > «,, using the
fact that D is directed. Then
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1
xgp—x = (xg—x,) + (x, —x) € ;B—i—U.

Letting U vary, this shows that xg — x € %B + U for all convex balanced
neighborhoods U of 0, so xg — x € %B since %B is closed (Proposition 1.9). In
particular, pp(xg—x) < % when 8 > a,. That simply means that xg+M — x+M
in (X/M, pp), that is that y = x + M by uniqueness of limits in Y.

So: T has closed graph, so T must be continuous. But

T'§x+MeX/M:pg(x)<1}) CB

by Theorem 3.7, so B is a neighborhood of 0 in X. O

Now to what can be said using dual spaces. Suppose X and Y are Hausdorff
locally convex spaces, and T : X — Y is any linear transformation. Define the
adjoint T*, with domain D(T*) C Y'*, as follows:

DT ={feY*: foT € X"},
T*(f)(x) = f(T(x))

It is easily checked that D(T*) is a subspace of Y*, and (as in Sect. 5.1) T* :
D(T*) — X* is alinear transformation. Somewhat more can be said when 7 has
closed graph.

Proposition 5.29. Suppose X and Y are Hausdorff locally convex spaces, and T :
X — Y is a linear transformation. Letting I'(?) denote the graph, and identifying
(X x Y)* with Y* x X* via Theorem 5.9 (note the reversal of order):

I'(~T* = r(1)*.

Finally, if I'(T) is closed, then D(T*) is weak-* dense in Y *.

Proof. Observe that (f,g) € I'(T)* if, and only if, f(x) + g(T(x)) = 0 for
all x € X. That is, if and only if g(T(x)) = —f(x). Since f is continuous,
automatically g € D(T*) and T*(g) = — f, thatis (—=T*)(g) = f. On the other
hand,if g € D(T*)and f = —T*(g),then f(x)+g(T(x)) = f(x)+T*(g)(x) =
0 for all x € X. When put together, this all shows that I'(=T*) = I'(T)> .

Now suppose I'(T') is closed. Note that I'(T') is a subspace of X x Y since T is
linear. If y € Y and y # 0, then (0, y) & I'(T), so there exists a continuous linear
functional on (X xY')/I"(T) that does not vanish at (0, y)+I"(T'). By Theorem 5.7,
this linear functional is represented by some (£, g) € I'(T)+, that is it has the form
(r*)5"(=T*(g), g) for g € D(T*) (in the notation of Theorem 5.7), thanks to the
fact that I'(T)+ = I'(=T*). In particular, y & D(T*) since g(y) # 0 for this g.
Letting y vary, D(T*), = {0}.
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Let Z denote the weak-* closure of D(T*). Then Z # Y* = there
exists a weak-* continuous, nonzero linear functional on Y * that vanishes on Z
(Hahn—Banach theorem). But any such functional is evaluation at a point y € Y
by Corollary 3.23(b), and that is excluded by the preceding. Hence Z = Y*, and
D(T*) is weak-* dense in Y *. O

Now it becomes clear what kind of assumption we should make on the range
space. The domain space will be assumed to be barreled, hence infrabarreled, so
Proposition 4.39 will guarantee that a linear map with a closed graph will be
continuous provided we make some kind of assumption on the range space that
will force the weak-* dense D(T*) to be all of Y *. Ptak came up with just such an
assumption.

Definition 5.30. Suppose Y is a Hausdorff locally convex space. Y is B-complete
if any subspace M of Y * with the property that:

M ﬂ U° is weak-* closed in Y™
for all barrel neighborhoods U
of 0in Y,

is weak-* closed in Y *. Y is B,-complete if the preceding holds whenever M is
weak-* dense in Y* (in which case the conclusion is that M = Y'*).

Clearly, B-complete spaces are B,-complete. Also, Fréchet spaces are B-
complete; this is normally proven using Krein—Smulian I in Sect. 6.2. However,
Ptak proved that for barreled spaces, B.-completeness is the “right” assumption:

If X is a barreled Hausdorff locally convex space with the property
that any linear map from a barreled space to X with closed graph is
continuous, then X is B,-complete.

This is Exercise 20; it has a number of steps, none of which is particularly difficult.
Since Fréchet spaces are appropriate targets for a closed graph theorem (and are
barreled), it follows that Fréchet spaces are B,-complete. In fact, looking at quotient
spaces, Fréchet spaces are B-complete (Exercise 21). This approach to proving that
Fréchet spaces are B-complete does not seem to be well known. It should be.

By the way, Exercise 31 of Chap. 4 establishes a closed graph theorem for maps
from one LF-space to another. LF-spaces need not be B,-complete, but the domain
is more restricted there.

Before proceeding to Ptak’s closed graph theorem (and its companion
open mapping theorem), a few results about B-completeness and B,-com-
pleteness are in order. First of all, the word “complete” following B and B, really
is justified.
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Proposition 5.31. B, -complete spaces are complete.

Proof. Suppose X is B,-complete, and suppose (x, : o« € D) is a Cauchy net
in X. If f € X*, then for all ¢ > 0 there exists a barrel neighborhood U of 0
in X for which x € U = |f(x)| < &. But now there exists « € D for which
B,y =a = xg—x, € U,sothat|f(xg) — f(xy)| = | f(xg —x,)| < &. Thatis,
(f(xq) : @ € D) is a Cauchy net in the base field, hence must be convergent there.
Set

@(f) zliglf(xa)forf € X*.

It is easily checked that @ is a linear functional on X™*, so its kernel M has
codimension 1 in Y *. Hence M is either closed in Y * or is dense in Y *.

Suppose M is dense in Y *, and U is a barrel neighborhood of 0. For each ¢ > 0,
there exists « € D such that 8,y > o = xg —x, € eU. That is, s_l(xﬂ -
x,) € U.If f € U°, then e7!|f(xp) — f(x))| = |f(e(xp — x,))| < 1, s0
| f(xg) — f(x,)| < e. Since ¢ > 0 is arbitrary, this all shows that the net limit

O(f) = lim f(x,)

is uniform on U°. Since each evaluation f +— f(x,) is weak-* continuous, the
uniform limit f +— @(f) is also weak-* continuous. (See Appendix A if this net-
limit property of limits is unfamiliar.) That is, @ is weak-* continuous on U°, so
MNOU° ={f € U°: &(f) = 0} is closed. Since X is B,-complete and U is
arbitrary, M is closed. That is, M is weak-* closed whether it is weak-* dense or
not, so @ is weak-* continuous. Hence @ is given by evaluation at a point x € X
by Corollary 3.23(b). It remains to show that x, — x in X.

Suppose U is a barrel neighborhood of 0 in X. There exists « € D such
that B,y > @ = xg —x, € U,sothatforall f € U® |f(xp) — f(x,)| =
| f(xg —x,)| < 1. Freeze B, andlety — oo : {y € D : y > «} is cofinal in
D since D is directed, so the limit of f(x,) over this set is also @(f) = f(x) by
Proposition 1.4. Thus | f(xg —x)| = | f(xg) — f(x)| <1 as well since U is closed.
Letting f vary over U° (but keeping xg fixed), xg —x € (U°)o. But U = (U°®),
by the bipolar theorem, so (now letting 8 vary) B > o = xg —x € U. This is
convergence of (x,) to x when U is also allowed to vary. O

There is one more result before getting to the closed graph and open mapping
theorems.

Proposition 5.32. Suppose X is a Hausdorff locally convex space, and Y is a
closed subspace. If X is B-complete, then so is X/ Y.

Proof. This starts with the identification (X/Y)* ~ Y. The first point is that
this algebraic isomorphism is actually a topological isomorphism when weak-*
topologies are used. Letting 7 : X — X/Y denote the natural map, note that if
F is finite in X, then 7 (F) is finite in X /Y, and all finite subsets of X /Y arise in
this way. Furthermore, if F is finite in X, then

F°ﬂYJ':{erJ':If(X)lflforallxeF},
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while the polar of 7 (F) in Y* is
€Y @) (N + 1) < 1.

But [(7)g ' (N)](x + ¥) = f(x): Set g = (x*)5"(f), so that (7%)o(g) = f,
thatis 7*(g) = f. Then f(x) = [7*(g)](x) = g(w(x)) = g(x + Y) as stated
above. (This is messy to make explicit, but is still direct.)

What all this shows is that the weak-* topology on X induces the (X/Y) —
weak-* topology on Y .

Suppose M is a subspace of Y+ for which M ( U° is weak-* closed whenever
U is a barrel neighborhood of 0 in X /Y. If V is a barrel neighborhood of 0 in X,
then 7 (int(V')) is open in X/ Y since & is an open mapping, so there exists a barrel
neighborhood U of 0 in X/Y such that U C n(int(V)) C x(V'). Using the fact
that for f € Y1: f(x) is identified as f(x + Y) = f(7(x)), | f(7w(x)| < 1 exactly
when | f(x)| < 1 (see above), so

VoYt =nm(V)° cuU°.

1 1
polar polar in
in X* Y1t~ (X/Y)*
Hence
M(Ve=m(\YH(Vve (since M C Y1)

=M \x(V)°> =M (U \=(V)".

an intersection of two weak-* closed subsets of Y. Since X is B-complete and V
is arbitrary, M is weak-* closed in X*, and so is weak-* closed in YL,
0

Now for Ptak’s closed graph and open mapping theorems. Ptak’s results are more
general, but at the expense of a much more complicated description.

Theorem 5.33 (Closed Graph Theorem of Ptak). Suppose X and Y are Haus-
dorff locally convex spaces, and suppose X is barreled and Y is B,-complete. If
T : X — Y is a linear map whose graph, I'(T), is closed in X X Y, then T is
continuous.

Proof. In view of Proposition 4.39, since X is infrabarreled, it suffices to show that
D(T*) = Y*. Since D(T*) is weak-* dense in Y * (Proposition 5.29), it suffices
(since Y is assumed to be B,-complete) to show that D(T*) (U° is weak-* closed
whenever U is a barrel neighborhood of 0 in Y. This is done by showing that
D(T*) (" U°® is the continuous image of a compact set.

Letw : X* x Y* — Y™ denote the canonical projection, and suppose U is a
barrel neighborhood of 0 in Y. Then T_l(U ) is convex, balanced, and absorbent,
so T~'(U)™ is a barrel in X, and so is a neighborhood of 0 since X is barreled. Set
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K =TT (T W))° x U]
= I (T~ W))° < Ul

Then K is weak-* compact in (X x Y)* ~ X* x Y* since I'(T)* is closed and
(T~Y(U)7)° x U° is weak-* compact (Banach-Alaoglu). (Note: The product of the
weak-* topologies on X * x Y'* is the weak-* topology of (X x Y')* since the ¢} and
;" mappings in Theorem 5.9 are weak-* continuous by Theorem 5.2.)

Suppose (f.g) € K. Then g € D(T*), and T*(g) = —f € (T (U)")° as
well as g € U°. In particular, g = n(f,g) € D(T*)(\U°. On the other hand,
if g € D(T*)(U®, and f = —T*(g), so that (f,g) € I'(—T™*), then for x €
T-Y(U):

I =1=-T"(@®)|=g(T(x)] =1

since T(x) € U. Hence T"'(U) C {x € X : |f(x)] < 1}, a closed set,
so T7'U)™ C {x € X : |f(x)] < 1} Thatis, f € (T7'(U)7)°, so
—f € (T7Y(U)7)° since polars are balanced. In particular, (f,g) € K, so
g = 7((f,g)) € m(K). What all this shows is that D(T*)(U° = =(K), a
weak-* compact set. O

Corollary 5.34 (Open Mapping Theorem of Ptak). Suppose X and Y are Haus-
dorff locally convex spaces, and suppose Y is barreled and X is B-complete. If
T : X — Y is continuous and onto, then T is an open map.

Proof. Replace X with X/ker(T), a space that is also B-complete, hence is
B,-complete, by Proposition 5.32. We have a continuous algebraic isomorphism

X/ ker(T) =% ¥

by Theorem 1.23(c); to show that T is an open map, it suffices to show that (7p)!
is continuous. But T} is continuous, so I"(7) is closed. Hence I'(7;; ") is closed by
the exchange (X/ker(T)) x Y ~ Y x (X/ker(T)). Hence T; ! is continuous by
Ptak’s closed graph theorem. O

See Exercise 19 for another class of B-complete spaces.
If it were not for the results of this section, most of the next section would belong
in the next chapter. However, the results here broaden things quite a bit.

5.7 Closed Range Theorems

The fact that the image of a transformation behaves more poorly than the kernel
is familiar from group theory: The kernel of a homomorphism is a normal
subgroup, while its range is a subgroup that is not necessarily normal. Something
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similar happens in ring theory: Kernels are ideals, while images are only subrings.
In functional analysis, what fails is not algebraic, but topological: The kernel of
a continuous linear transformation from one Hausdorff locally convex space to
another is a closed subspace, but its range is a subspace that need not be closed.

By the way, the words “image” and “range” were used as synonyms in the
preceding paragraph, but the word “range” is the one normally used in the context
of “closed range”:

Definition 5.35. Suppose X and Y are Hausdorff locally convex spaces, and 7T :
X — Y is acontinuous linear transformation. Then 7T has closed range when 7'(X)
is a closed subspace of Y.

Some of what matters here appears in disguise in Theorem 5.2. The following is
simply a clarification.

Theorem 5.36. Suppose X and Y are Hausdorff locally convex spaces, and T :
X — Y is a continuous linear transformation. Then

(a) T(X)*+ =kerT*,

(b) (kerT*), = T(X)",

(c) T*(Y*)L =kerT, and

(d) (ker T)* is the weak-* closure of T*(Y *).

Proof. In the third sentence of Theorem 5.2, setting A = X gives T(X)° =
(T*)~"(X°) = ker T*; but T(X)° = T (X)L since T(X) is a subspace. This gives
(a); it also gives (c) by using weak-* topologies on the dual spaces.

As for (b): (T(X)1) 1L = (ker T*), by part (a). But (E+); = E~ for subspaces
by the bipolar theorem, so (ker 7*); = T(X)~. Part (d) now follows by again
using weak-* topologies. O

Moral: If all maps in Theorem 5.36 have closed range, then there is a nice
symmetry between (a) and (b), and between (c) and (d). Nice symmetries are not
enough, however. The utility of “closed range” goes far beyond that. One example
is the formation of homology spaces: If d : X — Y and § : Y — Z are continuous
linear transformations of Hausdorff locally convex spaces with 6d = 0, then d has
closed range exactly when the homology space ker §/d(X) is a Hausdorff locally
convex space. This kind of thing matters. Other usages apply to solving equations:
By part (b), T has closed range exactly when

“T(x) = y has a solution for a

fixed y & f(y) = 0forall f € ker(T*)”

is valid.
The first few theorems relate 7 with T*. For the first one, the condition on the
range space is a bit peculiar, but does arise in practice.

Proposition 5.37. Suppose X and Y are Hausdorff locally convex spaces, and
suppose X is B-complete (or a Fréchet space) and Y has the property that every
closed subspace is barreled. If T : X — Y is a continuous linear transformation
with closed range, then T* has weak-* closed range.
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Remark. The property hypothesized for Y holds for Fréchet spaces.

Proof. Assuming T (X) is closed forces 7'(X) to be barreled, so we now have that
T is an open map (Corollary 5.34 or Theorem 4.35) onto 7'(X ). Hence the induced
map Tp : X/ ker(T) — T(X) is a topological isomorphism (Theorem 1.23). Hence
the induced map 7 : T(X)* — (X/ker(T))* ~ ker(T)* is bijective. However,
using the composite:

X 55 X/ ker(T) =% T(X) T = Ton
we get that T* = n*T"t*, where ¢ : T(X) — Y is the inclusion:

*«
0

* T 7'[*
Y* — TX)* — (X/ker(T))* — kerTtcCX*

T T .

onto, Theorem 5.6 Theorem 5.7

This has a companion.

Proposition 5.38. Suppose X and Y are Hausdorff locally convex spaces, and
suppose X is barreled and B-complete (or is a Fréchet space) and Y is first
countable. If T : X — Y is a continuous linear transformation, and if T* has
weak-* closed range, then T has closed range.

Proof. (Very weird): Assuming that T* has weak-* closed range, we have that
T*(Y*) = (kerT)* (Theorem 5.36(d)), so that T*(Y*) ~ (X/ker(T))* by
Theorem 5.7. Let 7; be the quotient topology of X/ker(7") transported over to
T(X), and let 7, be the induced topology on 7(X) as a subspace of Y. The
preceding shows that the dual space of (7'(X), 71) is precisely given by Y * / ker(T*)
(since that is isomorphic to T*(Y*) = (X/ ker(T))* as a vector space), while the
dual of (T'(X), 1) is given by Y*/ T'(X)* by Theorem 5.6. But T (X )+ = ker(T*)
by Theorem 5.36(a), so (T'(X), 71) and (T'(X), t2) have the same continuous linear
functionals.

Now for the weird part. (T'(X), ;) is barreled since X/ker(T) is barreled
(Proposition 4.2(a)), so (T (X), t1) infrabarreled, and so is a Mackey space (Corol-
lary 4.9). But (T'(X), 72) is first countable, so it is bornological (Proposition 4.10),
hence is infrabarreled, hence is also a Mackey space. That is, both 71 and 1,
agree with the Mackey topology on T (X), where its dual space is Y*/T(X)*. In
particular, t; = 1. But 7; is B-complete (Proposition 5.32) and so is complete
(Proposition 5.31), so 7'(X) is a complete, hence closed (Proposition 1.30) subspace
of Y. (If X is a Fréchet space, then so is 7'(X ), making things even simpler.) O

There is one more result along these lines that is suitable for presentation here. It
concerns strong topologies. It is difficult to state without replacing ¥ with 7 (X)™—
but then, any closed range theorem can be restated this way.
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Proposition 5.39. Suppose X and Y are Hausdorff locally convex spaces, and
suppose X is a Fréchet space and Y is infrabarreled. Suppose T : X — Y
is a continuous linear map for which T(X)™ = Y. Then T* is one-to-one. If
(T*)~' : T*(Y*) — Y* is strongly bounded, then T has closed range.

Proof. T* is one-to-one since T has dense range (Theorem 5.36(a)).

Suppose U is a barrel neighborhood of 0 in X. Then U° is equicontinuous,
hence is strongly bounded in X * [Theorem 4.16(a)], so U° [\ T*(Y*) is bounded
in T*(Y*), so (T*)"W(U°NT*(¥Y*) = (T*)"1(U®) is strongly bounded in
Y* by assumption. But (T*)"'(U°) = T(U)° by Theorem 5.2, so T(U)° is
strongly bounded in Y *. Hence T'(U)° is equicontinuous by Theorem 4.16(b), so
that (T'(U)°), is a neighborhood of 0 in Y. But 7(U) is nonempty, convex, and
balanced since U is a barrel, so (T'(U)°)o = T(U)™ by the bipolar theorem.

The preceding shows that 7(U)~ is a neighborhood of 0 in ¥ whenever U is a
barrel neighborhood of 0 in X, so T is nearly open (Corollary 4.33), and so is onto
(Theorem 4.35(b)). O

Remark. If X and Y are Banach spaces, then the strong topologies on the dual
spaces are Banach space topologies, and the preceding theorem shows that if 7
has a strongly closed range, then 7 has a closed range. [The boundedness of
(T*)~" comes from the open mapping theorem.] This is also true for Fréchet spaces
(Theorem 6.1), but that is a bit more involved. Like the result for Banach spaces, it
depends on Proposition 5.39.

The final topic here concerns compact linear maps. If X and Y are Hausdorff
locally convex spaces, and 7 : X — Y is a linear map, then T is compact when
T(U)~ is compact in Y for some neighborhood U of 0 in X . The next result gives
what we need for preparation.

Proposition 5.40. Suppose X and Y are Hausdorff locally convex spaces over R,
and T : X — Y is a compact linear map. Then T is continuous. If U is a barrel
neighborhood of 0 in X for which T (U)™ is compact, and V is a neighborhood of 0
inY, then there exists a closed subspace E of X such that X / E is finite-dimensional
and TWUNE)"CV.

Proof. Suppose T is compact, and U is a neighborhood of 0 in X for which
T(U)™ is compact. If V is a neighborhood of 0 in Y, then there exists ¢ > 0
such that T(U)~ C c¢V since T(U)~ is bounded, so T(U) C cV, giving
T(c'U)=c'T(U) CcVand T (V) D ¢ 'U. This shows that T is continuous
(Proposition 1.26(a)).

Now suppose that U is a barrel neighborhood of 0 in X for which T(U)~ is
compact, and V' is a neighborhood of 0 in Y. Replacing with a smaller neighborhood
we may assume that V' is a convex, balanced, open neighborhood of 0; it remains
to show that there exists a closed subspace E of finite codimension in X for which
T(ENU)-cCV.

Suppose not; suppose T(E(\U)™ — V # @ for all closed subspaces
E C X with dim(X/E) < oo. If E and F are two closed subspaces of
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finite codimension in X, then E (| F is a closed subspace of finite codimension
(E/(E(F) =~ (E + F)/F is finite dimensional since (E + F)/F C X/F) in
X,and TWNENF) CcTUNEYNTWUNOF), givingTWWNENF)” C
TWUWNE)"(TU (N F)~.Itfollows that the family of closed sets

{T(E ﬂ U)~ —V : E is aclosed subspace
of X with dim(X/FE) < oo}

has the finite intersection property in the compact set 7(U) ™, and so its intersection
is nonempty. Suppose y € T(E ((U)~ — V for all closed subspaces E of finite
codimension in X. This leads to a contradiction, as follows:

First, choose f € Y* for which f(y) # 0 (Corollary 3.17). Set E =
ker(T*(f)), a closed subspace of codimension 1. Note that

T(E(\U) C T(E) = T(kex(T*(f))) = T(ker(f o T))
= T(T™"(ker(f))) C ker(f).

and ker(f) is closed, so y €ker(f) D T(E(\U)". O

We can now give the closed range result. It is part of what is commonly called
the Fredholm alternative.

Theorem 5.41 (Riesz-Leray). Suppose X is a Hausdorff locally convex space,
and suppose T : X — X is a compact linear transformation. If I denotes the
identity map, then ker(I — T) is finite-dimensional and (I — T') has closed range.

Proof. Let Uy be a neighborhood of 0 in X for which 7'(Up)~ is compact. Uy
contains a barrel neighborhood U of 0, and T(U)~ C T(Uy)~, so T(U)~ is
compact as well. If x € ker(l — T), then 0 = x — T(x), thatis T(x) = x
so T(Uker(I —T)) = U(\ker(I — T), a closed subset of T(U)~. That is,
U (N ker(I —T) is a compact neighborhood of 0 in ker(/ —T'), so ker(I —T') is finite-
dimensional (Corollary 2.11). Choose a closed subspace E of finite codimension in
X forwhich T(U (N E)~ C %int(U). First of all it suffices to show that (I —T')(E)
is closed, since (I —T)(X)/(I—T)(E) is finite dimensional (it is an image of X/ E),
and so will be closed in X /(I —T)(E) (Corollary 2.10), making ({ —T)(X) closed
(Theorem 1.23(b)).

To show that (I — T)(E) is closed, start with a calculation. Let py denote the
Minkowski functional of U; then py is a seminorm (Theorem 3.7). Suppose x € E
and py(x) = r. Thenforalle > 0, x € (r + &)U, so that (r + &)"'x € U E.
Thus (r +&)7'T(x) = T((r + &)"'x) e TWNE) C 3intU C 1U,s0 T(x) €
%(r + &)U, giving py (T (x)) < %(r + ¢€). This holds for all € > 0, so py (T (x)) <

%r = %PU (x).

Now suppose y € (I — T)(E)~. Choose a net (x, : « € D) in E such that
(I —=T)(xy) = x4 —T(xq) — y. Then (x, — T (x4)) is a Cauchy net, so there exists
oo such that
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B,y =oag = (xg —T(xg)) — (x) —T(x,)) € % int U.

Given B,y > o, set x = xg — x,; the above says that x — T'(x) €
1[0, DU, so x — T(x) € rU for some r < 1, giving py (x — T(x)) <
means that

pu(x) = pu(x =T (x) + T(x)) < pu(x —T(x)) + pu(T(x))
1 1 1
< pulx=Tx) + spu(x) <5 + 5pu(x)
2 2 2
so that %py(x) < %, or py(x) < 1. Thus x € U. In particular, setting y = «ayo:
B > oy = xg— x4 € U,s0that xg € xo, + U and T'(xp) € T(xq,) + T(U) C
T(x4,) + T (U)™, acompact set. By Proposition 1.5, the net (7'(xg)) on the directed
set {f € D : B > ap} has a cluster point z. The final claim is that y + z € E and

(I —T)(y + z) = y. The simplest way to do this is to define a new net.
Let A be a neighborhood base at 0, and set

D'=Dx%;(a,V)> (B, W)whena > fand V C W.

D’ is directed, and one can define a net on D’ as follows. Given (¢, V) € D/,
choose § € D such that 8 > o, B > «p, and T'(xg) € z+ V, which is possible
since z is a cluster point. Let S(c, V') be this . First, note that limp/ T (xg«,1)) = 2
by construction. Also, given W € 2, there exists «; such that @ > o) = x4, —
T(xy) € y + W. But now if (o, V) > (a1, W), then B(«, V) > o > «;, so that
Xga,v)— T (X)) € ¥y + W as well. This shows that limp/ (] —T)(Xg@,v)) = ¥.
We therefore get that

limxpey) = Mmxpey) =T (Xpay))

+ hDIp T(xlg(ay)) =y+zekE

since E is closed, and

T(y+z) = T(liDIpXﬁ(a,V))

= llDII/l T(x}g(aqv)) =z

since T is continuous. Hence (/ =T)(y+2)=y+z—T(y+z) = y+z—z=y. O

The construction at the end of the proof is an example of a subnet; notice that it is
much more complicated than the construction of a subsequence, since the directed
set must be allowed to change.
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It would be nice if we could conclude that T* is (strongly) compact when T
is compact, but this is not so in general. However, there is a topology one can
place on the dual spaces, called the Arens fopology, under which the adjoint of
a compact operator is compact. This allows one to conclude that X /(I — T)(X)
is also finite-dimensional. All this is covered in the exercises. Somewhat deeper is
the fact that X /(I — T)(X) and ker(/ — T') have the same dimension. That also
appears in the exercises, with the following result providing the starting point. It
also gives a weaker condition under which ker(/ — T') will be finite-dimensional,
but compactness for T also appears to be necessary to force I — T to have closed
range.

Proposition 5.42. Suppose X is a Hausdorff locally convex space, T : X — X isa
continuous linear transformation, and U is a barrel neighborhood of 0 subject to:

(o) T(U) does not contain a nontrivial subspace of X, and

(B) T(U) is covered by N translates of%int(U); that is there exists wy, ..., Wy €
X for which
N 1
TWU)C i + =int(U) | .
) jszl[w,+2m( )|

Consider the chain of subspaces K; = ker(I — T)/:
{0}CKiCKyyC---.

Then:

(a) The chain stabilizes beyond j = N : Ky = Ky41 =+,
(b) Every K; has dimension < N; and
(c) dim K| = dimker(/ — T) < dim(X /(I — T)(X)).

In the proof, the following lemma will be used several times:

Lemma 5.43. Assume X, T, and U are as in Proposition 5.42. Suppose
O0=MyGEM M, & - & M,

is a chain of finite dimensional subspaces of X for which (I —T)My C My—, when
k> 1.Thenn < N.

Preliminary Observation: Let py denote the Minkowski functional associated
with U. By Theorem 3.7, py is a continuous seminorm since U is a neighborhood
of 0 and is convex and balanced. Letting [, be as in the definition of py, then

I, ={t>0:xetU}={>0:1"'xeU},
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a relatively closed subset of the interval (0, c0) since U is closed. Thus (unless
pu(x) = 0), I, = [pu(x),00),s0x € U & 1 € [py(x),00) & pu(x) < 1.
That is:

U={xeX:py(x) <1} (%)

(This has been noted before, using sequences.)

Also, int(U) = [0, 1)U (Theorem 2.15), so if x € int(U), then x = ty for some
y e Uandt € [0,1), giving py(x) = py(ty) = tpy(y) <t-1 < 1. On the
other hand, if py(x) < 1, choose ¢ for which py(x) < ¢ < 1. Then py(t~'x) =
tTlpy(x) <t7lt=1,50t"'x eUandx =t -t7'x € [0, 1)U = int(U). Hence

int(U) ={x e X : py(x) <1}. (x%)

Proof of Lemma 5.43. The first thing to note is that py is a norm on each M.
This is by induction on k, and is trivial when k = 0. As for k — k + 1, suppose
X € My and py(x) = 0. Letting IF denote the scalar field (R or C), if ¢ € F, then
pu(cx) = 0aswell,socx € U forallc € F. Thus ¢T(x) = T(cx) € T(U) for
all c € F, thatis F - T(x) is a subspace of X contained in 7(U). By assumption,
this must be trivial, so 7(x) = 0. Hence x = x — T'(x) = (I — T)(x) € Mg, so
that x = 0 by the induction hypothesis (py is a seminorm on Mjy).

Next, there is only one way to make a finite-dimensional space into a Hausdorff
locally convex space (Proposition 2.9), and on each M}, the norm topology from
pu does that, so py gives the induced topology on each My. Also, U (| My is
not contained in My—; (U () My is absorbent in My), and 2U () M} is compact.
By (%), if x € UMy and y & 2U, then py(x) < 1 while py(y) > 2. Since
pu(y) =pulx+(y—x) < pu(x) + pu(y —x): pu(y —x) = 1.

Fork =1,...,n, choose any y; € U (| My — My—,. As a function on Mj_,

fi@) = pu(yk —2)

has a value < l atz = 0 € U (| Mi—,, while it has values > 1 forz € My — 2U,
so the minimum of f; on the compact set 2U (| Mj—; is a minimum on Mj_;.
Let z; be a point where this minimum is achieved, with t; = py(yx — zx). Set
xi = t; ' (yk — z«). Observe the following:

() pu(xx) = puty' (e —z)) = 1 pu(vk — z) = 1,50 x; € U by (¥).
(ii) If z € My_, then
pu(xk —2) = puty (v — ) — 2)
=t pu(yk — (2 +k2) >t 't = 1.
since zx + txz € My—1. Hence

(iii) (Trick Alert!) If k > j,thenx; —T(x;) € M; | C My_yandx; € M; C
Mj—y, so
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T(xp)—T(xj) = xx — (xx = T(xx)) + x; — (x; —T(x;)), and

in My

pu(T(xi) —T(x;)) = pulxx — (e = T(xp) + x5 — (x; — T(x7))))=1.

Now T'(x1),...,T(x,) € T(U), which is covered by the sets w; + %int(U). If
both T'(x;) and T (x;) belong to w; + %int(U), then T'(xx) —w; € %int(U), o)
pu(T(xr) —wr) < 1. Similarly, py (T (x;) —wi) < 1,50

pu(T(xx) —T(x;)) < pu(T(xk) —wr +w; —T(x;))
< pu(T(xx) —wi) + puw; —T(x;)) < L.

Since this cannot happen: The points 7'(x;), ..., T (x,) must belong to distinct sets
wy + %int(U), S %int(U). By the pigeon hole principle,n < N. O

Proof of Proposition 5.42: This is done using a series of steps.

Step I: dim K; < N. Suppose vy, ..., v, is a finite, linearly independent subset
of Ki. Set My = span{vy, ..., vi}. Since (I — T)M; = {0}, these spaces satisfy
the hypotheses of Lemma 5.43, son < N. Since N is an upper bound for any
finite linearly independent subset of K;, and K; does have a basis (which, if
infinite, will have arbitrarily large finite subsets), K; must be finite dimensional,
with dimension < N.

Step 2:  dim(K;+1/K;) < dim(K;/K;_;). Consider the composite map:

=) b4
Kj+l —> Kj—>Kj/Kj_1.

The kernel is
{x €Kjt1:(I-T)(x) € Kj-1}={x € Kj41 : (I=-T) ' (I-T)(x)=0}=K;,

so dim(K; +1/K) equals the dimension of the image of the composite, which
(as a subspace) has dimension < dim(K; /K;_1).

Step 3:  Every K is finite-dimensional. Induction on j. Step 1 gives the j = 1
case, while Step 2 provides the induction step.

Proof for part (a): Set M; = K, now known to be finite-dimensional. Once
K; = K;_1,youget K;1| = K; by Step 2, so it stabilizes beyond some n, with
K,1 # K, = K,y1--- (unless all K; = {0}, in which case Proposition 5.42 is
trivial). By Lemma 5.43,n < N.

Nowset K = Ky = Ky =+--.

Step4: dim(K) < N (proving part (b)). Start with a basis of K; : vy,...,v.
Extend it to a basis of K, : vj4y,...vy. Etc. As in Step 1, set My =
span{vy, ..., v }. Since we do not climb up to K; | until we have a basis of K ;,
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this satisfies the hypotheses of Lemma 5.43. Since the basis has dim K entries,
dim K < N. [Note that what we really need here to get the spaces My is that,
relative to the ordered basis (vy, . . ., v ), the matrix of / — T should be in upper
triangular form, with zeroes on the diagonal.]

Step 5:  There is a subspace Y of K, with dimY = dimK;, for which
Y (I — T)(K) = {0}. This is pure linear algebra. As a map from K to itself,
I — T has kernel K|, so it has rank dim K —dim K by the rank-nullity theorem.
Now choose Y to be a subspace of K which is complementary to (I — T)(K),
sothat K =Y & (I — T)(K).

Step6: Y (I — T)(X) = {0}. This is where part (a) is needed, and resembles
arguments from the study of commutative Noetherian rings. Suppose x €
Y NI — T)(X). Since x € (I — T)(X), we can write x = (I — T)(y) for
somey € X.Sincex € Y C K = Ky:

I-D"' = -T)"U-T)(») =U -T)"(x) =0.

Hence y € Ky4+1 = Ky,sothatx = (I — T)(y) € (I — T)(K). Combining:
xeYNU —T)K) = {0}.

Part (c) now follows:
dim(X/(I = T)(X)) = dim((Y + (I — T)(X))/(I — T)(X))
=dim(Y/(Y ﬂ(l —T)(X))) =dim(Y) = dim K.

O
A final note. When T is actually compact, with 7'(U )~ being a compact subset of
X, then T (U) is bounded, and so cannot contain a nontrivial subspace of X. Also,
since dim ker(/ — 7)) = dim(X /(I — T)(X)) by Exercise 25 of this chapter, it
follows from the proof above that X =Y @ (I — T)(X). Also, the bound “n < N”
in Lemma 5.43 can be improved on. When the base field is R, one can use the set
{£x1,...,£x,} to get 2n < N. When the base field is C, one can get 6n < N
(Do you see why?). One suspects, for measure theoretic reasons, that # < constant -
log(N), but complicating matters is the fact that the points w; need not belong to
K. If you are inclined toward combinatorial geometry, have fun with it.

Exercises

1. The following is part of Theorem 5.2.

If X and Y are locally convex spaces, and T € Z£,(X,Y), then T* is
continuous when X* and Y * are equipped with their weak-* topologies.
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Expand on this. Suppose X is also Hausdorff and infrabarreled. Show that S €
Z,(Y*, X*) is an adjoint map (i.e. S = T* for some T € %, (X,Y)) if and
only if S is weak-* continuous.

. Examine the proof of Theorem 5.10, and isolate the proof of the following: If

X is a Hausdorff locally convex space, then X is infrabarreled if and only if all
strongly bounded subsets of X* are equicontinuous.

. Suppose X and Y are Hausdorff locally convex spaces. Show that T +— T*

from Z.(X,Y) to Z.(Y*, X*) is bounded.

. Suppose X and Y are Banach spaces. Show that T — T* from Z.(X,Y) to

L, (Y*, X*) is an isometry.

. The first part of the proof of Proposition 5.32 is a proof that the map (7*) of

Theorem 5.7 is a homeomorphism of ((X/M)*, weak-* topology with (M,
topology induced from weak-* topology of X*). The point of this problem is to
prove the analogous result for the map (¢*)o of Theorem 5.6 when M is closed.
For this problem, X is a locally convex space, and M is a closed subspace. ¢, t*,
and (t*) are as in Theorem 5.6.

(a) Show that ¢* and (:*)¢ are continuous when weak-* topologies are used.

(b) Show that a convex, balanced, absorbent subset of R” or C" is a neighbor-
hood of 0. (Intersect with a ball, then use Proposition 2.9.)

(c) Show that if V is a convex, balanced subset of X* such that V = [0,1)V,
and if E is a subspace of X * which is contained in V, then V is a union of
cosets of E.

(d) Show that if V' is a convex, balanced, absorbent subset of X*, then V is
a weak-* neighborhood of 0 if and only if V' contains a weak-* closed
subspace E of X* for which X*/E is finite-dimensional. (Hint: You can
look at [0, 1)V, and use part (c). Proposition 2.9 also helps.)

(e) Suppose E and F are two weak-* closed subspaces of X*, and suppose
X*/E is finite-dimensional. Show that E + F is weak-* closed, with E +
F = ((E1) N(FL))*. (Exercise 18 from Chap. 1 will help here, as will
Proposition 2.9.)

(f) Show that ¢* and (:*)¢ are open maps when weak-* topologies are used. (Use
F=M=+in part (e); note that F;, = M since M is closed.)

Suppose (X; : i € .#) is an infinite family of Hausdorff locally convex spaces.
Check that the product [ | X; is a Hausdorff locally convex space. (Theorem 2.1
does most of the work.) Show that algebraically, ([ X;)* ~ ¥ & X;*. Also,
show that if B; is bounded in X; for all i, then [] B; is bounded in [ ] X;, and
every bounded subset of [] X; is contained in such a product. Finally, use this
to show that the strong topology on ([ [ X;)* ~ X & X is the box topology,
where a neighborhood base at 0 consists of sets of the form (X & X*) [ Ui,
where the sets U; vary over neighborhood bases at 0 for each X;.

. Suppose X and Y are two Hausdorff locally convex spaces, so that (X x Y)* =

X*xY*and (X xY)** ~ X**xY™**. Show that Jxxy correspondsto Jx X Jy
under these identifications. Use this to show that X x Y is infrabarreled if and
only if both X and Y are infrabarreled.



Exercises 159

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

. Show that a normed linear space that is also a Montel space is finite-dimensional.

Show that Example I of Sect. 3.7 is a Montel space.
Show that Example I of Sect. 3.8 is a Montel space.
Show that, in the proof of Proposition 5.22,

7! (%U) >\ 7! (%U)

a€D

given simply that T (x) = lim 7T, (x) always exists. In particular, just using
condition (b), the pointwise limit 7" (which is linear by Proposition 4.19) is
continuous.

Suppose X is a Hausdorff locally convex space. Show that X is a Montel space
if, and only if, X is quasicomplete and infrabarreled, and bounded sets are
(originally) precompact.

(Compare with previous problem) Suppose X is a Hausdorff locally convex
space.

(a) Show that bounded subsets of X are weakly precompact.

(b) Show that X is semireflexive if, and only if, X is weakly quasicomplete.

Suggestion for (a): If fi,..., f, € X*, look at the image of a bounded set in
[F" (using the f; as coordinate functions), where I is the base field. This image
is totally bounded in F".

Suppose X is a Banach space, and |||?|||« is a norm on X* that is equivalent
to the operator norm on X *. Show that there exists a norm on X which is
equivalent to its original norm, and for which |||?]||« is its operator norm.
Suppose w is Lebesgue measure on [0, 1]. Show that the closed unit ball
in L'(11) has no extreme points. Use this, the Krein-Milman theorem, and
Exercise 14, to show that L'(u) is not topologically isomorphic to the dual
space of any Banach space.

Compute the extreme points of £!. Note: £' “is” the dual space of cy, the
subspace of £*° consisting of sequences which tend to zero.

Suppose X is a compact Hausdorff space, and let C(X) denote the Banach
space of continuous, real valued functions on X. Show that f € C(X) is an
extreme point of the closed unit ball in C(X) if and only if f(X) C {£1}. Use
this to show that C(X) cannot be reflexive unless X is totally disconnected.
(Note: Once C(X)* is identified, it is not hard to show that C (X)) is reflexive if
and only if X is finite.)

Suppose X is a Hausdorff locally convex space, and M is a closed subspace.
Prove:

(a) If X is B,-complete, then so is M.
(b) If X is B complete, then so is M.

(Exercise 5 will help here.)
Show that the strong dual of a reflexive Fréchet space is B-complete.
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20. Suppose X is a barreled, Hausdorff, locally convex space, and suppose X is not
B, -complete. This problem consists of constructing a discontinuous linear map
from a barreled space to X which has closed graph. Let M denote a weak-*
dense, proper subspace of X* having the property that M (U° is weak-*
closed for all barrel neighborhoods U of 0 in X. Let t denote the topology
of X. Set

By = {(M ﬂ U®) : U is a barrel
neighborhood of 0 in X }.

Explain why statements (a)—(n) are true. (Most take no more than a sentence or
two.)

(a) Ay is abase at 0 for a Hausdorff locally convex topology 7o on X.
(b) The dual space of (X, 7o) is M.
© &
Let T denote the identity map from the vector space X to itself, considered
as a map from (X, to) to (X, 7). Its graph is the diagonal in X x X.
(d) I'(T) is ty x p-closed.
(e) I'(T) is 7y x t-closed.
® T :(X,w) — (X, ) is not continuous.
Let U denote a barrel in (X, 7). Set D = U°and E = M (\U°
(g) U isabarrelin (X, 7).
(h) E is the polar of U as a subset of (X, 19).
(i) Ec=Uand D, =U.
(j) E and D are both weak-* closed, convex, balanced, and nonempty in X *.
(k) D=E.
(1) U is a rp-neighborhood of 0 in X.
Letting U vary
(m) (X, 19) is barreled.
Note: (e), (f), and (m) complete the discussion, except for:
(n) Fréchet spaces are B,.-complete.

21.(a) Suppose X is a Hausdorff locally convex space. Reverse the argument
in Proposition 5.32 to show that X is B-complete provided X/Y is B,-
complete whenever Y is a closed subspace of X. (Given M,setY = M .)

(b) Show that Fréchet spaces are B-complete.
22. Suppose X is an infinite-dimensional normed space. Show that the weak
topology on X is not first countable, hence is not metrizable. Hint: Look closely
at the second half of the proof of Proposition 5.38.

23. Suppose X is a Hausdorff locally convex space. The Arens topology on X* is

defined by the base

{K° : K is originally compact

and convex in X }.
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verify that this is a locally convex topology on X*. (The discussion of the
Mackey topology in Sect. 3.6 will help here.) Show also that if E is an
equicontinuous subset of X*, then the Arens topology on E coincides with
the weak-* topology. (Use Proposition 5.22.) Hence show that if U is a barrel
neighborhood of 0 in X, then U° is compact in the Arens topology. Finally,
show that if X™* is given the Arens topology, then every continuous linear
functional on X* is evaluation at a point of X.

24. Suppose X and Y are Hausdorff locally convex spaces,and T : X — Y isa
compact linear map. Show that 7* is compact when X * and Y * are equipped
with the Arens topology. (Exercise 23)

25. Suppose X is a Hausdorff locally convex space, and T : X — X is a
compact linear map. Show that X /(I — T')(X) is finite-dimensional, with the
same dimension as dim ker(/ — 7). (I = identity map. Use Exercise 23 and
Proposition 5.42.)

The next six exercises are concerned with Fredholm operators, although some
preliminary results are included. If X and Y are two Fréchet spaces or two LF-
spaces, then a continuous linear map S : X — Y is called a “Fredholm operator”
if S has closed range, and both ker(S) and Y /S(X) are finite-dimensional. The
index of S is defined as dim ker § — dim(Y /S (X)). It is important in a number of
applications. From Theorem 5.41 and Exercise 25, if T is compactand X = Y, then
I —T is a Fredholm operator of index zero. Exercise 31 is the ultimate objective: If S
is a Fredholm operator and 7' : X — Y is compact, then S — T is also Fredholm,
with the same index as S. This result is sometimes referred to as the “homotopy
theory of Fredholm operators.”

26. Suppose X, Y, and Z are three Hausdorff locally convex spaces, and suppose
S:Y > Zand T : X — Y are two continuous linear maps, one of which
is compact. Show that ST : X — Z is compact. (Note: There is a slight trick
involved if the compact map is 7'.)

27. Suppose X and Y are two Hausdorff locally convex spaces. Show that the
set of compact linear maps from X to Y constitutes a subspace of .Z.(X,Y),
which includes all continuous linear maps of finite rank. (Hint: The latter factor
through F".)

28. Suppose X and Y are two Hausdorff locally convex spaces, @ : X — Y isa
linear homeomorphism, and 7 : X — Y is a compact linear map. Show that
@ — T has closed range, with dim (ker(® — 7)) = dim(Y /(P — T) (X)) < oo.

29. Suppose X = | J X, is an LF-space, and Y is a Fréchet space. Show that X x
Y = (X, xY) is an LF-space. That is, show that the product topology
on X x Y coincides with the LF-topology associated with writing X x Y =
U(X, x Y). (Use Lemma 5.8.) (Note: A similar result, with a similar proof
shows that X x Y is an LF-space when both X and Y are LF-spaces.)

30. Suppose X and Y are either two Frechet spaces or are two LF-spaces, and
S : X — Y is a Fredholm operator of index 0.
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(a) Show that there is a continuous linear map 7o : X — Y of finite rank
for which @ = § + Tj is a linear homeomorphism. [Hinz: Have Ty map
ker(S) onto a subspace complementary to S(X), and use Theorem 4.35,
Theorem 4.37, or Exercise 31 from Chap. 4 to cover o]

(b) Show thatif 7 : X — Y is compact, then S — T is Fredholm with index 0.
(Do youreally need ahint? S — T = @ — (T + Ty).)

31. Suppose X and Y are either two Fréchet spaces or two LF-spaces, and suppose
S : X — Y is a Fredholm operator and 7 : X — Y is compact. Show that
S — T is Fredholm, with the same index as S.
Hint/Trick: If the index of S is positive, replace Y with ¥ x F". If it is negative,
...(This is why Exercise 29 is grouped here.)

One more problem, concerning completeness of quotients.

32. Suppose X is a locally compact Hausdorff space. Let C(X) denote the space
of continuous, real-valued functions on X. Using Definition 3.32, topologize
C(X) using the directed family of seminorms

px(f) = max{| f(K)|: K compactin X}.

Suppose Y is a closed subset of X, and consider the map f — f \Y, with
(closed) kernel M and range o C C(Y). Note: Y is also locally compact.
Topologize C(Y') in the same way, using compact K C Y.

(a) Show that C(X) is complete.

(b) Show that <7 is dense in C(Y') using the Stone—Weierstrass theorem on each
compact K C Y.

(¢) If K is compact in X, let K denote (K — Y)|J{oo}, the one point
compactification of K — Y. (Note: As a topological space, K — Y is locally
compact, so Kisa compact Hausdorff space.) If g € C(K) (or g € C(X))
and g|KmY =0, set

gx)ifxe K-Y

fi K.
0 ifx =00 orxe

g(x) =

Using the Stone-Weierstrass theorem on K, show that {g:g € M}isdense
in {h € C(K) : h(co) = 0}. Use this to prove the following: If f € C(X),
PNy (f)=m,and e > 0, then one can set

A={xeK:|f(x)]=m+e}

and letting y be a Urysohn function on K whichisOon K ()Y and 1 on 4,
there exists 7 € M such that max |()?j\” - ﬁ)(l%)| < ¢. Show that for this £,
px(f —h) < m + 2¢. Finally, use this to show that the subspace topology
on &/ C C(Y) coincides with the quotient topology on C(X)/M = <.
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(d) Now suppose that X is not normal. (Such spaces do exist; see Proposition
A.21 in Appendix A.) Let A and B denote two closed subsets that cannot be
separated. Set Y = A U B. Show that the function thatis 1 on 4 an O on B
is continuous on Y but does not belong to <. Hence show that C(X)/M is
not complete.

(e) (“Mathematics Made Difficult”—Linderholm [25]) Use (a)—(c) and the idea
behind (d) to show that a o-compact, locally compact Hausdorff space is
normal.



Chapter 6
Duals of Fréchet Spaces

6.1 Opverview Plus

A good title for this chapter might have been “Weird Countability.” The point is
that, while “countability” applies to a Fréchet space X in basically one way (it is
first countable), it affects X* in some rather strange ways.

There are four major theorems to be proven in this chapter. Each uses its own
twist on countability. Letting X denote a Fréchet space, they read as follows:

1. (Krein-Smulian I) A convex subset E of X * is weak-* closed provided
E N U° is weak-* closed for all barrel neighborhoods U of 0 in X.

Note that the fact that Fréchet spaces are B-complete follows immediately.
2. X** is a Fréchet space.

The fact that X ** is first countable is easy; the problem is completeness, since
X* need not be bornological. The conditions from Definition 4.1 are directly related,
however.

3. The following are equivalent:
(1) X* is barreled.

(i1) X* is infrabarreled.
(iii) X* is bornological.

Proving (ii) = (iii) is the hard part.
Finally, there is the leftover from Sect. 5.7. Surprisingly, it is feasible to do this
now.

Theorem 6.1. Suppose X and Y are Fréchet spaces, T € £,(X,Y), and T* has
strongly closed range. Then T has closed range.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 165
DOI 10.1007/978-3-319-02045-7__6, © Springer International Publishing Switzerland 2014
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Proof. First, replace Y with 7(X)~, which is also a Fréchet space. We have
(dually):

X LT(X) Y

x* "Xy ()t — v
onto
The composite along the bottom is the old 7*, and its range is the same as that of
the new T*. The whole point is to get to the situation of Proposition 5.39. So having
made this replacement, it suffices to show that (T*)™! : T*(Y*) — Y * is strongly
bounded.

Suppose B is a strongly bounded subset of 7*(Y *). B is equicontinuous [Theo-
rem 4.16(b)], so there exists a barrel neighborhood U of 0 such that B, D U, giving
B C U° (Proposition 3.19(e)). Set D = T*(Y™*) (| U°, a strongly closed, convex,
balanced, strongly bounded, nonempty subset of X*. (U° is strongly bounded
since it is equicontinuous by definition.) In accordance with Proposition 3.30, form
the normed space (X}, pp); this is a Banach space since X* (and hence D) is
complete (Corollary 4.22).

Now for the “weird countability.” Let V; D V, D --- be a neighborhood base for
the topology of Y at 0. If f € Y™, then { f }, is a neighborhood of 0, so V,, C {f'}o
for some n, so that f € V,°. Thatis, Y* = |V, . Thus T*(Y*) = T*(U V) =
JT*(V,?). Each V;? is weak-* compact, so each T*(V,”) is weak-* compact, hence
is weak-* closed, and so is strongly closed. It follows that 7*(V,”) () X}, is pp-
closed in the Banach space (X}, pp). (Proposition 3.30). But D C T*(Y*), a
subspace of X*, so X}, = domain of pp = |JnD C T*(Y™), giving that X}, =
U(T*(V,?) () X})- By Baire category, some 7*(V,’) () X}, has nonempty interior
in X}, and that interior is convex and balanced (since 7*(V,’) () X}, is) and so
contains 0. Hence, forsome ¢ > 0:¢D C T*(V,”) () X}.

This does it: D C e~ !'T*(V,?) = T*(¢7'V,°), giving:

B=T*Y*)(\BCT*Y*)[\U°=DCT*@e'V). thatis
(T*7'(B) c 7'V, = (eW)°.

an equicontinuous, hence strongly bounded (Theorem 4.16(a)) set. O

Corollary 6.2. Suppose X and Y are Fréchet spaces, and T € Z£.(X,Y). The
following are equivalent:

(i) T has closed range.
(ii) T* has weak-* closed range.
(iii) T™ has strongly closed range.

Proof. (iii) = (i) is Theorem 6.1. (i) = (ii) is Proposition 5.37. (ii) = (iii) is trivial.
]
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6.2 Krein-Smulian I

The name “Krein—Smulian theorem” is generally applied to two results. The one
here concerns weak-* closed subsets of the dual of a Fréchet space, as described in
Sect. 6.1. The other appears in Appendix C.

Since we are concerned with looking at sets of the form C (\U® in X*, it is
useful to use this to define a topology.

Definition 6.3. Suppose X is a locally convex space, and C C X*. C is almost
weak-* closed (resp. almost weak-* open) if C [\ U° is weak-* closed (resp.
relatively weak-* open in U °) for all barrel neighborhoods U of 0 in X. t, denotes
the class of almost weak-* open subsets of X *.

Before going on, two more quick generalities: Define tx to be the locally convex
topology on X* with a base at 0 that consists of all K°, where K is compact in X.

Let 7y denote the locally convex topology on X * whose base at 0 consists of all
S°, where S = {x, : n € N} for a sequence x, such that lim x, = 0. These both
give locally convex topologies on X * in the usual way. (If S = {x,} and T" = {y,},
then S |J T = {z,}, where 22, = x, and 22441 = Y».)

The next result is basic.

Lemma 6.4. Suppose X is a locally convex space. Let t* denote the weak-*
topology on X*. Then:

(a) C is almost weak-* open if, and only if, C (| E is relatively weak-* open in E
for all equicontinuous sets E.

(b) t, is a translation invariant topology.

(c) T C 1y C 1 C 140

Proof. (a) If C is almost weak-* open, and E is equicontinuous, then there
exists a barrel neighborhood U of 0 such that U° > E. Hence C(E =
(CU°)NE is relatively weak-* open in E since C [\U° is relatively
weak-* open in U°. Conversely, if C () E is relatively weak-* open in E for all
equicontinuous E, then C (| U° is relatively weak-* open in U*° because U° is
equicontinuous.

(b) If C is t,-open, and f € X*, then for all equicontinuous E:

(f+O(E=f+C[\E-1)

is weak-* openin E — f since the weak-* topology is translation invariant and
E — f is equicontinuous. That 7, is a topology comes from

UCHNE=UCNE)and
(CNCHYNE=(CNENCNE).
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(c) ™ C v because each t*-neighborhood of 0 is a ty-neighborhood: If F =
{x1,...,x,} is finite, set x; = O for k > n. Then limx; = 0, and F° =
(F U {0})° is a Ty-neighborhood of 0. Ty C g as follows. If S = {x,}
for a sequence x, such that limx, = 0, then {x,} ({0} is compact (standard
topology), so S° = (S U {0})° is a standard neighborhood of 0 for 7g. Finally,
suppose C is tg-closed. If U is a barrel neighborhood of 0, and f belongs to
the weak-* closure of C (\U®, choose a net (f, : @ € D) for which each
fo € C(U®, and lim f, = f. Then f, — f uniformly on compact sets by
Proposition 5.22, so if K is compact, then there exists « € D s.t. B > o =
| fp(x) — f(x)| < 1forall x € K. Thatis, f3 — f € K°. Thatis, letting K
vary, fo — f in the tg-topology,so f € C. Butalso f € U° since U° is
weak-* closed. Letting the nets vary, C (| U° is weak-* closed. Letting U vary,
C is almost weak-* closed.

O

The weird countability will come from a recursive application of the following.

Lemma 6.5. Suppose X is a locally convex space, and W* is an almost weak-*
open neighborhood of 0 in X*. Suppose U and V are neighborhoods of 0 in X
for which U C V and V° C W*. Then there exists a finite set F C V for which
(UUF) Ccw*

Proof. U° is equicontinuous, as are all (UUF)°,so U°—W* and all (UUF)°—W*
are relatively weak-* closed in the weak-* compact (Banach-Alaoglu) set U°. So
suppose not; suppose all (U U F)° — W* are nonempty. Then since

(UUFUG) =U°(\F°(\G°
= U (F)(WU° ()6 =UUF)P°(UUG",

the family of sets (U U F')° — W * has the finite intersection property. Since U°—W*
is weak-* compact, there exists f which belongs to every (U U F)° — W*. Since
f & W* D V°, there exists x € V such that | f(x)] > 1. But this means that

S EU U - W u!

Theorem 6.6 (Banach-Dieudonné). Suppose X is a first countable Hausdorff
locally convex space. Then T, = Ty = Tk.

Proof. We already know that ty C tx C 7, (Lemma 6.4), and all are translation
invariant, so it suffices to show that if W* is an open t,-neighborhood of 0, then
W* contains a ty-neighborhood of 0.

Let Uy D U, D Us D --- be a neighborhood base at 0 for X, and set Uy = X
so that (Up)° = {0} C W™. For each n, choose a finite set F, C U, so that
Unr1 U FoU---U F,)° C W™, this is done recursively as follows:
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Assuming (U, U (FoU--- F,—1)° Cc W*,and U, U (FpU---U F,_;) D
U1 U(FpU---UF,_): there exists F, C U, U (FyU---U F,_) such
that (Un+l U(F()U' ) Fn—l) U F,:)o C W*, since U, U(F()U' ) Fn—l)
and U,4+1 U (Fy U --- U F,_)) are neighborhoods of 0 (Lemma 6.5).

Set F,, = Fy: — (F() U---uy F,,_l) c U,, glVlIlg Uy+1 U (F() U---u
FioitUF) =U+1 U(FLU---UF,).

Now note that S = | J F,, is the trace of a sequence converging to 0 (go through Fp,
then Fi, then ---). Then for all n,

SUU,=U,U(FyU---UF,_)
since F;, € Uy C U, forn > k. Hence

SuUU) =U,U(FyU---UF,_)° CcwW*

But now
S°ﬂ U =(SUU,)° CW*foralln
o
=85 =JEMUu) cw*
n=0
since | JU;, = X* (see the proof of Theorem 6.1). Since S° is a standard
Ty -neighborhood of 0 in X*, this completes the proof. O

Corollary 6.7. Suppose X is a Fréchet space. Then any almost weak-* continuous
linear functional on X* is evaluation at a point of X.

Proof. Since X is complete, the closed convex hull of a compact set is compact
(Theorem 4.28), so (taking convex hulls) tx can be defined using the polars of all
compact convex sets. These sets are weakly compact and convex, and the (finer)
topology defined by the polars of weakly compact convex sets is precisely the
Mackey topology on X * associated with having evaluation maps be the dual. Since
Tk = 1, 18 trapped between two topologies (weak-* and Mackey) on X* having
the same dual, 7, also has this dual. O

Corollary 6.8 (Krein—Smulian I). Suppose X is a Fréchet space, and C is a
convex subset of X*. Then C is weak-* closed in X* if, and only if, C (\U° is
weak-* closed for every barrel neighborhood U of 0 in X.

Proof. This is just Theorem 3.29 applied to (X*, 7,). O

This Krein—Smulian theorem is typically applied to subspaces, but there are other
uses as well.
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6.3 Properties of the Dual

The two remaining results depend on some unusual consequences of countability in
the dual space. As a preliminary, the following is basically a part of the proof that
duals of semireflexive spaces are barreled.

Proposition 6.9. Suppose X is a Hausdorff locally convex space, and suppose D
is a weak-* closed, convex, balanced, absorbent subset of X*. Then D is a strong
neighborhood of 0 in X*.

Proof. Since D is weak-* closed, convex, balanced, and nonempty, D = (D,)°.
Set A = D.,; it suffices to show that A4 is bounded. But A° = D is absorbent, so 4
is bounded by Corollary 3.31. O

Now for the countability.

Proposition 6.10. Suppose X is a Hausdorff, first countable, locally convex space,
and suppose V, is a sequence of convex, balanced, strong neighborhoods of 0
in X*. Then: If (\V, absorbs all strongly bounded sets, then (\V, is a strong
neighborhood of 0.

Proof. Set V = (V,.Let Uy D U, D --- be a base for the topology of X at 0.
Then each U, is equicontinuous, hence is strongly bounded. Choose #, > 0 so that
U, C %V, and choose a bounded set A4, C X for which 47 C %Vn. Set

W, = con (hU? Ut,Us U---Ut,U°) + A2
CiV+sVucCiVatsVu=V,

since all V}, are convex. Then (\W, C [V, = V, so it suffices to establish the
following lemma, which will be needed later:

Lemma 6.11. Suppose X is a Hausdorff, first countable, locally convex space.
Suppose:

() Uy D Uy D -+ is a base for the topology of X at 0,
(B) t1,t2, ... is a sequence of positive real numbers,

(v) A1, Az, ... is a sequence of bounded subsets of X, and
(8) Wy =con (U UhUy U---ULU) + A

Then con(t;U Ut, Uy U---Ut,U;) is weak-* compact, and W = (W, is a strong
neighborhood of 0 in X.

Proof. Eacht;U ]f’ is weak-* compact (Banach-Alaoglu), so con(t; U7 U---Ut,U,;)
is weak-* compact by induction on n. (Usual business: The convex hull of C U D is
compact when C and D are compact and convex by Proposition 2.14, since it is the
continuous image of C x D x [0, 1].) Hence W, is weak-* closed by Corollary 1.15.
W, is also convex and balanced, so W is weak-* closed, convex, and balanced.
In view of Proposition 6.9, it suffices to show that W is absorbent. But for all n
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and m, there exist constants s,,, > 0 such that s, ,U;’ C A; since each U, is
equicontinuous, hence is strongly bounded. So: for all m, n we have

t,U; C Wy, if m > n, and

SmalU; C Ay C Wy ifm <n, so

n

e Uy C W, forall m, where

&y = min(t,, 1,0, 2.4+ - > Sn—1.n)

since W,, is balanced. Hence ¢, U, C () Wi, that is (| W, absorbs all U, . Hence
() W, absorbs all points of U, = X*. |

Grothendieck [16] classifies spaces having the intersection property specified in
Proposition 6.10; and which have a countable sequence of bounded sets B, (the
sets U in the proof) which is fundamental, in the sense that any bounded set B is
contained in some B,; as DF-spaces. He develops their properties systematically.
It is worth looking at.

We can now prove:

Theorem 6.12. The second dual of a Fréchet space is another Fréchet space.

Proof. Let Uy D U, D --- be a neighborhood base for the topology of X at 0.
Then each U, is equicontinuous, hence strongly bounded in X* (Theorem 4.16(a)).
Thus each U,° is a strong neighborhood of 0 in X **. If B is strongly bounded in
X*, then B is equicontinuous [Theorem 4.16(b)], so B C U, for some n, giving
B° D Uy*. That is, the sets U,>° form a base for the strong topology of X**, so
X** is first countable. It remains to show that X ** is sequentially complete. That is
where Proposition 6.10 comes in.

Suppose (@,) is a Cauchy sequence in X **. Set V,, = {®,}o. Then each V,, is a
convex, balanced, strong neighborhood of 0. Also,

(Ve = ){®Pu}o = {Ps :n €N}

absorbs any strongly bounded set D since D° (as a neighborhood of 0 in X **)
absorbs {®@, : n € N}: Cauchy sequences are bounded. Hence V' = (V, is a
strong neighborhood of 0 in X*, and |®,(x)| < 1 for all n and all x € V. Since
@(x) = lim @, (x) exists pointwise as a bounded linear map (Theorem 4.20), this
shows that |@(x)| < 1 for x € V, so @ is continuous, and lim®, = & there
(Theorem 4.20 again). O

There is one thing left.

Theorem 6.13. Suppose X is a Fréchet space. Then the following are equivalent:

(i) X* is barreled.
(ii) X* is infrabarreled.
iii) X* is bornological.
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Proof. As always, (i) = (ii) < (iii). Also, (ii) = (i) since X* is complete, by
Corollaries 4.22 and 4.8. It remains to prove that (ii) = (iii) for duals of Fréchet
spaces. Suppose X* is infrabarreled, and suppose C is a convex, balanced set
that absorbs all bounded sets. The main step is to replace C with a subset that is
somewhat less arbitrary.

As before, let U; D U, D --- be a neighborhood base for X at 0. Each U, is
equicontinuous, hence is strongly bounded. Choose #, > 0 so that#,U,” C C. Set

D, = con(t,US U---UU).

This set is weak-* compact by Lemma 6.11.

Also, each D,, is convex and balanced, and D, C C since C is convex. Set
D =|JD,. Then D C C. Also D absorbs each U?, since t,U°> C D, C D.If B
is strongly bounded in X*, then B is equicontinuous (Theorem 4.16(b) again), so
B C U, for some n, and D absorbs B since it absorbs U,’. The final claim is that
%D_ C D. This will do it, since D, as an ascending union of convex balanced sets,
is convex and balanced, so that %D_ is closed, convex, balanced, and absorbs all
bounded sets, making it a neighborhood of 0 when X* is infrabarreled. (Note: We
will then get %D_ C D c C, making C aneighborhood of 0.)

The idea for showing that %D_ C D is to show that if f ¢ D, then f ¢
%D_. Suppose f ¢ D. Then for all n, f & D,. Since D, is weak-* compact
(Lemma 6.11), it is weak-* closed, hence is strongly closed. Choose a bounded set
A, C X sothat f ¢ D, + A in accordance with Proposition 1.9. Set

1 1 1
W,==D, + A° = -nhUy u---u=U° AL,
2 + n con(21 1 2 n)+ n

Then W = (") W, is a strong neighborhood of 0 by Lemma 6.11. But for all n, since
D,, is convex:

1 1 1 1
S €Dyt A5 =Dy + 5Dy + Ay = 2Dy + Wy D 2Dy + W

so f ¢ J(3Dn+ W) =1D+ W.Hence f ¢ 3D~ by Proposition 1.9. O

Is there an underlying theme for how countability arises in this chapter? The most
common characteristic is the ability to form recursive definitions, as has already
been noted in Sect. 1.6. Sometimes it is hidden, as in the definition of D, in the
proof of Theorem 6.13. That is not the whole story, though. Recursion does not play
any role in the proof of Theorem 6.1. That depends on the Baire category theorem.

But the proof of the Baire category theorem uses a recursive construction ... .

Hmmm.
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Exercises

1. Examine the proof of Theorem 6.1, and verify that (i)—(iii) in Corollary 6.2 are
equivalent to:

(iv) T*(X™*) is sequentially closed in the strong topology.

2. Suppose X is a Fréchet space, and suppose V' is a convex, balanced, absorbent
subset of X* such that V' (| U* is weak-* closed for every barrel U in X. Show
that V' is a strong neighborhood of 0.

3. (A variant of Theorem 6.1, based on later material.) Suppose X is a Fréchet
space, and suppose Z is a strongly closed subspace of X* with the following
property:

o0
Z = |J Ky; where each K, is weak-* compact, convex, and balanced, and

n=1
2K, C Kn-H-

(a) Show that Z is weak-* closed in X *.

(b) Show that, in the proof of Theorem 6.1, this can be arranged for Z = T*(Y*)
by choosing the base V; D V, D --- so that each V), is convex and balanced,
and 2V, 4 C V, (Chap. 3, Exercise 24).

Note: For part (a), either Krein—Smulian I or Exercise 21 of Chap. 5 is used. This
approach to Theorem 6.1 is commonly used.

4. Check that under the hypotheses of Proposition 5.22, T, — T uniformly on
precompact sets. Then show that under the hypotheses of Theorem 6.6, 7, = the
topology of uniform convergence on precompact sets. Finally, if X is a Fréchet
space, show that 7, is the Arens topology of Chap. 5, Exercise 23.

5. Suppose X is a Fréchet space, and suppose X* is separable. Show that X* is

infrabarreled.
Hint: If D is a countable dense set in X*, and B is a barrel in X * that absorbs
all strongly bounded sets, then for all f € D — B: f ¢ B = (B°),, so choose
@ € B°sothat |®@,(f)| > 1. Intersect the sets {@ s}, over f € D — B to form
a set W. Show that W is a strong neighborhood of 0 for which int(W) C B.

6. (Proposition 3.46 revisited) Show that an LB-space is a DF-space, and show that
the strong dual of a DF-space is a Frechet space. (The latter is a reworking of
Theorem 6.12.)

7. One last problem that does not quite belong anywhere—except that this chapter
can help. Suppose X is a first countable, Hausdorff, locally convex space. If
X 1is a Fréchet space, then the closed convex hull of a compact set is compact;
this follows from Theorem 4.28(g), (d), and (h). The purpose of this problem is
to show a converse: If the closed convex hull of {x,}( J{0} is weakly compact
whenever x, — 0, then X is complete. To do this, start as usual with a
neighborhood base for X at 0 consisting of barrels: Uy D U, D Uz D ---
Now set V,, = 27U, so that 2V, C V, for all n. It suffices, by Theorem 1.35,
to show that if x,, € V,,, then ¥'x,, converges. Suppose x,, € V,,. Then 2"x, € U,
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so lim2"x, = 0. Let K be the closed convex hull of {2"x,} U {0}, and assume
K is weakly compact. Set s, = >, _; Xx. Show the following:

(a) s, € K forall n.

(b) If m > n, then s,, € s, + U,.

(c) If s is a weak cluster point of (s, )}, then s € s, + U, for all n. (Remember: U,
is weakly closed.)

(d) If s is a weak cluster point of (s,), then s, — s. Since s exists (Proposi-
tion 1.5), X'x, converges. (See Exercise 19 of Chap. 3.)

Now for an approach more in keeping with this chapter. Assume that X is
Hausdorff and first countable, and the closed convex hull of {x,} U {0} is weakly
compact whenever lim x,, = 0. With no preparation, show the following:

(e) Every ty-continuous linear functional on X* is evaluation at a point of X.
(Use Proposition 3.27.)
(f) X is B-complete, hence is complete. (Hint: ty = t,.)

Notice the difference?



Appendix A
Topological Oddities

This appendix is concerned with those topological results that appear in the text at
isolated points and that are not necessarily covered in a beginning graduate course
in real analysis. The biggest problem here is organization, since the relationship
between subjects is often rather tenuous (and, in one case, nonexistent). Placing
subjects in the order they appear in the text would make this discussion almost
unreadable, but things will be organized so that deviation from that order is minimal.
The first topic is the uniform convergence of a net of continuous functions.
Suppose X is a topological space, (Y, d) is a metric space, and (f, : ¢ € D) is
a net of continuous functions from X to Y. The net { f,) converges uniformly to
f : X — Y when the following happens: For each ¢ > 0, there exists « € D such
that 8 > a implies d( f3(x), f(x)) < eforallx € X.
Notation: B(y, r) = open ball of radius r around y.

Proposition A.1. Suppose X is a topological space and (Y,d) is a metric space.
Then the uniform limit of a net of continuous functions from X to Y is continuous.

Proof. As above, suppose { fo : @ € D) is a net of continuous functions from X to
Y, which converges uniformly to f. Suppose V' is open in Y, and suppose xo € X
and f(xo) € V. We must establish that x is an interior point of f~!(V).

Choose r > 0 so that d(y, f(x0)) < r = y € V. Choose @ € D so that
B> a = d(fs(x), f(x)) <r/2forall x € X.SetU = f,Y(B(f(x0),r/2)).
Then: o > «, so:

L d(fu(x0). f(x0)) < /2,50 fu(xo) € B(f(x0).r/2). Hence xo € U.
2. If x € U, then d( fo(x), f(x0)) < r/2,s0 that

d(f(x). f(x0)) = d(f(x), fu(x)) + d(fu(x). f(x0))
<r/24r/2=r,
so that f(x) € B(f(xo).r) CV,andx € f~1(V).
Put together, this shows that U is an open neighborhood of x; in

1. o
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The proof above may be familiar; the sequence version is used, for example, in
the proof of Urysohn’s lemma. The surprise is the appearance of r/2 rather than
r/3, the latter being familiar from the case of functions from R to R. The reason
r/2 suffices is that we are not selecting 8’s for f, itself; instead, the openness of
F7Y(B(f(x0),r/2)) is appealed to directly.

Continuing with nets, consider nets in product spaces. Suppose (X; : i € .#) is
a family of topological spaces. An element x = (x;) in [] X; will be denoted with

subscripts. To avoid confusion, a net in [ | X; will be denoted with parentheses.

Proposition A.2. Suppose (X; : i € &) is a family of topological spaces, and
suppose (x(a) : « € D) is anet in [[ X;. Then limy, x(«) = x in [[ X; if and only
if limy x; (@) = x; foralli.

Proof. Let mr; denote the projection from [] X; to X;. Then lim, x(o) = x =
lim, 7;(x(a)) = m;(x) since m; is continuous [Proposition 1.3(c)], so that
limg x (o) = x; forall j € 7.

Suppose lim, x; () = x; foralli € .#.If U is open in [ X; and x € U, then

there exists ji,..., j, € % and opensets Vi,...,V, (Vi C X},) such that
V= Vkllfz:jkforsomek cuU
: X; if not
1€.
and each x;, € V. Choose @1, ...,0, € D suchthat B > ax = x,(B) € Vi, and
choose o > p such that o > every ax. Then 8 > a = B > oy forr =1,...,ns0
thatx(e) e V C U. O

Continuing with products, the next subject is countable products of metric spaces.
To start the discussion, observe that any metric space (X, d) has an equivalent,
bounded metric

/ _d(x,y)
d(x.y) = 14+d(x,y)

The triangle inequality for d’ follows from the discussion preceding Theorem 3.35.
This metric is actually bounded by 1, and it not only gives the same topology as d,
it also has the same Cauchy sequences as well, since

&
d(x, d'(x, )
(x,y) <e <& (xy)<1+£

The immediate objective is to show that a countable product of metric spaces is
metrizable. This can be done directly, but the following generality will be useful
later.

Proposition A.3. Suppose (X, 1) is a topological space, and suppose € is a
subbase for t. Suppose d : X x X — R is a metric on X. Then the d-topology
coincides with t provided the following two conditions hold:

(i) Forallx € X, d(x,?) : X — R is t-continuous.
(ii) Each U € € is d-open.
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Proof. Let t; denote the topology produced by d. Then ¥ C t; by (ii), so T C 74.
On the other hand, if x € X and r > 0, then each B(x,r) = d(x,?)~'((—=o00,7)) €
T by (i), so ty C 7 since the set of all B(x, r)’s form a base for t,. O

Corollary A.4. The countable product of metric spaces is metrizable.

Proof. Let ((X,,d,) : n € N) be a sequence of metric spaces, with the metrics d,
chosen so that each d, < 1. Set

d((xn), (yn) = D 27"y (n, ).

n=0

d is a metric since each d, is a metric. If (x,) is fixed, then (y,) — y» —
dm (X, ym) is continuous in the product topology, and the series defining d is
uniformly convergent (Weierstrass M -test—still valid here), so condition (i) in
Proposition A.3 is verified. It remains to check condition (ii).

The subbase to use for (ii) is the usual one for the product topology. Fix m, and
suppose U,, is open in X,,. Set

It remains to show that Uy isd -open.
Suppose (x,) € Uy, thatis x,, € U,,. Choose r > 0 so that B(x,,,r) C U,,.
Then

277 > d((xn), () = Y 27" d (X, )

n=0
> 27"dy (Xims Yim)

N

=1 >dXm Ym) = Ym € Un = (yn) € Un

so that B({x,),27"r) C Up,. O

Corollary A.5 (Urysohn Metrization Theorem). Suppose X is a second count-
able Ty space. Then X is metrizable.

Proof. Let € be a countable base for the topology of X. Set
¢ ={(B,B')e¢¥x%:B” CB'}.

%’ is countable; write ¢” as {(B1, B). (B, B})....}. Using Urysohn’s lemma, for
each n, choose a continuous f;, : X — [0, 1] such that

VxeB,: fi(x) =0, and
VxeX—B,: filx)=1.
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(B, and X — B), are two disjoint closed sets.) Note that if x # y, thenx € X —{y},
so there exists B’ € € such that x € B’ C X — {y}. Since {x} and X — B’ are
two disjoint closed sets, there exists disjoint open sets U and V with x € U and
X — B’ C V. Finally, there exists B € ¥ withx € B C U,sothat B~ C U~ C
X —V C B'. Thus (B,B’) € ¢, so that (B, B’) = (B,, B}, for some n, and
fn(x) = 0while f,(y) =1.

If X is empty or consists of one point, then X is trivially metrizable, so assume
X consists of more than one point. Then the preceding shows that " # @. Set

d(x.y) =Y 27" fi(x) = f (D).

n=1

This function is easily checked to be a metric; the preceding paragraph shows that
x # y = d(x,y) > 0, and the triangle inequality is direct:

d(x,z) = ZZ_”M,(x) — fn(@)]

n=1

<Y 27 (LA®) = LW+ 14HG) = L))

n=1
=d(x,y)+d(y,2).

Furthermore, as before, the series defining d(x, ?) is a uniformly convergent series
of continuous functions, so to complete the proof it suffices to show that each B’ €
% is d-open (Proposition A.3). But as before, if x € B’ € €, then {x} and X — B’
are disjoint closed sets ... there exists B € € with x € B C B~ C B/, so that
(B, B’) = (B, B;,). Hence

27" > d(x.y) = Y27 f) = L)

n=1

27" fn(xX) = SO = 27" fin ()
= fm()#1=>y¢X-B,=yecB,
so that B(x,2™™) C B'. O

v

Urysohn is best known for Urysohn’s lemma and Urysohn functions.
The Urysohn metrization theorem is probably his second most famous result.
Less known, but very important, is an obscure fact concerning convergence in
a topology, our next subject. Before leaving the metrization theorem, however, it
should be remarked that about half the basic texts that prove the Urysohn metrization
theorem only assume that X is a second countable 73 space. However, a second
countable T3 space is a T, space; see Munkres [26, Theorem 32.1] or Kelley [20,
page 113].

Urysohn’s convergence result (Urysohn [37]) is not well known, but some similar
results are often used in connection with normal families in complex analysis.
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Vitali’s theorem (Boas [4, p. 217]) provides an example of this. Urysohn’s result
(generalized slightly) is easy to state and prove, but is rather unintuitive.

Proposition A.6. Suppose X is a topological space, (x,) is a sequence in X, and
x € X. Then lim x, = x provided either of the following conditions hold:

(i) x is a cluster point of every subsequence (x,,) of (x).
(ii) Every subsequence (x,) has a further subsequence (xnkj) which converges
to x.

Proof. (ii) = (i), since the limit of a subsequence of (x,, ) is a cluster point of {x,, ).
The proof that (i) = lim x,, = x is by contrapositive;

Claim. If “lim x,, = x” is false, then (x,) has a subsequence (x,, ) such
that x is not a cluster point of (x,, ).

This is straightforward. Assuming “lim x,, = x” is false, there exists an open set
U, with x € U, such that x, is not eventually in U. Choose n; such that x,,, ¢ U.
Choose n, > n; such that x,,, ¢ U, and so on. The subsequence (x,, ) does not have
x as a cluster point since it never enters U. O

For the applications in this book, the fact that (i) implies convergence is most
useful. For normal families, it is (ii) that one most often appeals to, using the
following:

Corollary A.7. Suppose X is a sequentially compact Hausdorff space, and suppose
(xn) is a sequence in X and x € X. If each convergent subsequence of (x,)
converges to X, then lim x,, = x.

Proof. Each subsequence (x,,) has a further subsequence (xnkj) that converges
to some y € X since X is sequentially compact, and y = x since (xnkj) is a
subsequence of (x,). This verifies (ii) in Proposition A.6. O

In Vitali’s theorem, for example, the uniqueness of the possible limits of
subsequences comes from the identity principle.
Another historical application of Proposition A.6 is the following:

Corollary A.8. On [0,1), pointwise convergence a.e. does not coincide with
convergence in any topology.

Proof. Set
J1 = xo:
J2 = Xy =
fi=Xoyn  S=Exwa o fe= g

| full — 0, so each subsequence (f,,) converges to 0 in L', hence has a further
subsequence f,,kj — Oae.But f, A~ Oace. O
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Continuing the discussion of compactness, the next result is fairly well known,
but what does not seem to be well known is that it is actually useful. It does play a
role in some proofs of the implicit function theorem.

Proposition A.9 (Compact Graph Theorem). Suppose X is a compact Hausdorff
space, and Y is a Hausdorff space. Suppose  : X — Y is a function. Then f is
continuous if, and only if, its graph I’ (f) is compactin X x Y.

Proof. If f is continuous, then I'(f) = F(X), where F(x) = (x, f(x)) € X xY.
Since F is continuous and X is compact, F(X) = I'(f) is compact.

Suppose I'(f) is compact. Let 7 : X x ¥ — X be the natural projection. If C
is closed in Y, then X x C is closed in X x Y, so (X x C)(\I'(f) is compact.
Hence f~1(C) = n((X x C)(\ I'(f)) is compact, hence closed, in X. O

Corollary A.10. Suppose X is a compact Hausdorff space, and Y and Z are
Hausdorff spaces. Suppose f : X — Y is continuous and onto, and g : Y — Z is
a function for which g o f is continuous. Then g is continuous.

Proof. Y = f(X) is compact Hausdorff, and for all y € Y, there exists x € X
such that f(x) = y, and g(y) = g o f(x). This simply says that I'(g) = F(X),
where F(x) = (f(x),go f(x)) e Y x Z. O

This result will be needed in Appendix C.

Continuing with compactness, the next result is a preliminary to Alexander’s
lemma. It is also used directly in Theorem 4.28. There is a close analogy between
what happens here and some results in commutative ring theory. Consider the
following two results:

Proposition A.11 (Cohen). Suppose R is a commutative ring with
identity, and suppose P is an ideal in R which is maximal (under set
inclusion) with respect to the property of not being finitely generated.
Then P is a prime ideal, and any nonfinitely generated ideal is contained
insucha P.

Proposition A.12 (Isaacs). Suppose R is a commutative ring with
identity, and suppose P is an ideal in R which is maximal (under set
inclusion) with respect to the property of not being principal. Then P is
a prime ideal, and any nonprincipal ideal is contained in such a P.
There are others like these. The next result follows the same pattern, provided we
make a couple of (nonstandard) definitions.
Suppose (X, .7) is a topological space, and suppose & C 7. & will be called
an “ideal” if &2 is closed under finite unions and swallows intersections from .7,
that is:

UVeZ=UUV e, and
UePVed=UNVe

& will be called a “prime ideal” if U,V €  and U (\V € & implies that U €
PorV e
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Proposition A.13. Suppose (X, .7) is a topological space, and suppose & is an
open cover of X that is maximal (under set inclusion) with respect to the property
of not having a finite subcover. Then & is a prime ideal, and any open cover of X
that has no finite subcover is contained in such a 2.

Proof. First, suppose & is maximal. f W € J and W ¢ &7, then & & & U
{W} = £ U {W} has a finite subcover: {W, Uy, ..., U,}. Now:

UVeZbwtUUVE&P=IHUUVU,...,U}
(finite subcover) = {U,V,U,,...,U,}isa
finite subcover of &2, a contradiction,

soUUV e £,

Also,

UeZPVeITbutUNVegP=3UNVU,...,Uy,}
(finite subcover) = {U,U,,...,U,}isa
finite subcover of &2, a contradiction,

soUNV e P

Hence & is an ideal. & is prime because

UVeg UNVePUEP andV ¢ P
= 3{U,U,,...,U,}and I{V, V1,..., Vy},
finite subcovers of £ U {U} and & U {V'},
respectively. But x ¢ U = x € some U;
andx €V = x € some Vi, so{U NV, Uy,...,U, Vi,...,Vu}
is a finite subcover of &2, a contradiction.

Now suppose % is an open cover of X that has no finite subcover. Set
of ={€ € C ¢ C 7 and € has no finite subcover of X.}.

€ € o,s0 o # @.If 2 is a nonempty chain in 7, set 6p = | J 2. Then € C
%o C J.1If 6 has a finite subcover {Uy, ..., U,}, then each U; € €; € 2, for
some ¢, so there exists / with each U; € 4 since & is totally ordered. But now
{U, ..., U,}is afinite subcover of 47, a contradiction. Hence % € <7 This verifies
the hypotheses of Zorn’s lemma, so .2/ has a maximal element Z. O

A property of prime ideals is the following.

Lemma A.14. Suppose (X, .7) is a topological space, & is a prime ideal in 7,
and € is a subbase for 7. Then | ) & = | (£ (€).

Proof. |J 2 O | J(Z2 () trivially. Suppose x € | 2, that is there exists U €
& such that x € U. There exists Vi,...,V, € € suchthatx € Vi ()--- (Vo C U
since ¢ is a subbase. Now Vi ()---(\Vua =Vi[)---\Va( U € & since & is an
ideal, and there exists j with V; € & since &7 is prime. Hence x € V; € & (%

O
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Corollary A.15 (Alexander’s Lemma). Suppose (X,7) is a topological
space, and € is a subbase for 7. If every open cover from € has a finite subcover,
then X is compact.

Proof. Suppose (X, .7) is not compact. Then there exists a & as in Proposi-
tion A.13, so that &7 (¥ will be a cover of X (Lemma A.14) with no finite
subcover. O

Theorem A.16 (Tychenoff Product Theorem). The product of any family of
compact topological spaces is compact.

Proof. Suppose (X; : i € .#) is a family of compact spaces. For each j € .7, let
¢; denote the subbase elements of the form

A Ujifi =j
o =TIy Z 0
fis X;ifi #
manufactured from the open subsets U; of X;. Then | J%; is a subbase for the

product topology, so by Alexander’s lemma it suffices to show that an open cover
from | %; has a finite subcover. Let Z be an open cover from | %;, and set

9 =2(\: 9 ={Ui C X, : U; € D).

There are now two possibilities.

1. Some 7/ covers X;. Butthen X; C U;(1) U---U U;(n) = X C U(1)u---U
U; (n), giving a finite subcover.

2. No 2! covers X;. But then for all j one can choose x; such that x; ¢ U; for
all U; € 7. Thus, (x;) & Uj for any U; € 2} or any j. That means that
U % = 2 does not cover X.

O

Now for local compactness. A compact Hausdorff space is locally compact by
definition, and an open subset of a locally compact Hausdorff space is locally
compact since Proposition 1.6(i) holds. When discussing topological measures on
locally compact Hausdorff spaces, there are two routes one can take.

1. Baire measures. The class of Baire sets is the o-algebra generated by the compact
Gs’s. The primary advantage here is that Baire measures are automatically
regular on the o-bounded Baire sets. Royden [30] uses this approach.

2. Radon measures on the Borel sets. A Radon measure is a Borel measure that is
inner regular on open sets and outer regular on Borel sets. The primary advantage
here is that the theory of supports becomes available. Folland [15] uses this
approach.

Given a Baire measure u, there is a unique Radon measure /i that agrees with
i on the o-bounded Baire sets (Royden [30, Theorem 22, Chap. 13]), and this is
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necessary for a satisfactory theory of supports, since the support of a measure need
not be a Baire set. The support is defined as follows. Suppose u is a Radon measure
(or even a Baire measure). Let Z denote the class of open sets U (or open Baire
sets) such that u(U) = 0. Z is closed under countable unions. Set

supp(u) = X — |_J U.
UeZ

If K is compact (or just a compact Baire set), and K C X — supp(u), then Z covers
K, so K is contained in a finite union of members of Z, and so K C U for some
U € Z. Hence u(K) < u(U) = 0. Since p is inner regular on open sets, u(X —
supp(i)) = 0. [This final conclusion is unavailable if w is only a Baire measure
and supp(u) is not a Baire set.] Furthermore, if V is open and V () supp(u) # 0,
then by definition V ¢ Z, so w(V) > 0. Since V — supp(u) C X — supp(u) :
w(V —supp(pe)) = 0. This proves the following:

Proposition A.17. Suppose X is a locally compact Hausdorff space and p is a
Radon measure on X. Suppose U is open in X. Then:

(a) If U (\supp(n) = 9, then u(U) = 0.
(b) If U (\supp(u) # 9, then n(U) = u(U (| supp(u)) > 0.

There is a corollary that will be needed in Appendix C.

Corollary A.18. Suppose X is a compact Hausdorff space, and let ¢ denote the
set of positive Radon measures  on X for which w(X) = 1, considered as a
(convex) subset of C(X)* via the Riesz representation theorem. Then the extreme
points of 2 are the point measures |, for p € K:

lifpeE}

MP(E):{Oipr/E

Proof. Each u, is extreme: If u, = tu + (1 —t)v,0 <t < 1, with u,v € %,
then 0 = p,(X —{p}) = ti(X —{p}) + (1 = )v(X —{p}), so w(X —{p}) =
v(X—{p}) = 0.Hence u({p}) = n(X) =1 =v(X) =v({p}).and p = v = p,.

An extreme p has the form p, for some p: By Proposition A.17(a), supp(u) = 9

is out [otherwise, u(X) = 0], so supp(u) # 0. 1If p # q; p,q € supp(n), choose
disjoint open U and V with p € U and ¢ € V. Then u(U) > 0 and u(V) > 0 by
Proposition A.17(b), so

w=pul)-v+1A—-pU))-A; where
v(E) = (E N U)/p(U), and
AME) = w(E-U)/u(X =U).

v(U) =landv(V) = 0, s0 v is not i, and u is not extreme. Thus, if u is extreme,
then supp(u) = {p} consists of one point. Hence u = p, by the considerations in
the first part of this proof. O
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While not strictly needed here, the next result illuminates the situation where
supports are not Baire sets. It also is directly connected with its corollary, which is
relevant to our next subject.

Proposition A.19. Suppose X is a locally compact Hausdorff space. Then any
compact Baire set is a Gs.

Proof. Suppose K is a compact Baire set. Then K is contained in the o-algebra
generated by the compact Gj’s, so there exists compact Gs’s K, K3, ... such that
K is contained in the o-algebra generated by {K, K>, ...}. For each n, choose a
continuous f, : X — [0, 1] such that K,, = f,7'({1}). Define

f=(f):X—>Y=]]o.1.

n=1

This f is continuous since its coordinate functions are continuous. Moreover,
o0
1} ifn=m
K, =f"! { .
(i)
Let %,(Y) denote the Borel sets in Y; then £~1(%y(Y)) is a o-algebra in X that

contains every K,,, so K € £71(%y(Y)). That is, K = f~!(A) for some Borel set
A C Y.Hence f(K) C A, so that

K=f'(4)>f'#K) DK

and K = f~1(f(K)). But f(K) is compact and Y is metrizable (Corollary A.4), so
f(K) is a Gs in Y. (Any closed subset B of a metric space is a Gs: Set U, = {x :
d(x,B) < +}.) Writing f(K) = (U, gives K = (' (U,). O

Corollary A.20. Suppose X is a locally compact Hausdorff space, and p € X.
Then {p} is a Baire set if, and only if, there is a countable neighborhood base at p.

Proof. 1f there is a countable neighborhood base {Vi, V,,...} at p, then {p} =
(int(V;) is a Gs, hence is a Baire set. Suppose {p} is a Baire set, so that {p} =
(U, for a sequence of open sets U,. Using Proposition 1.6, choose for each n a
compact neighborhood V,, of p such that p € V,, C U,. Set W,, = Vi (---( Va-
p € int(V)) (- int(V,) C W,, so each W, is a neighborhood of p. The claim
is that {W,} is actually a neighborhood base at p.

Suppose p € U and U is open. If no W, C U, then for all n, W, —U # @. Since
W), —U = V| — U is compact and each W, — U is closed, by Cantor intersection

(ﬂm)—u=ﬂ(wn—v>¢@.
n=1

n=1

But this cannot happen, since W, C V,, C Uy, and (U, = {p} C U. Hence there
existsn : W, C U. O
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Compact Hausdorff spaces that are not first countable are easily constructed;
the product of uncountably many copies of [0, 1] is such a space. This leads to an
additional class of examples.

Proposition A.21. Suppose X is a compact Hausdorff space that is not first
countable. Let p be a point of X for which there is no countable neighborhood
base. Then

is a locally compact Hausdorff space that is not normal.

Proof. The two closed sets that cannot be separated are A = {p} x (0,1] and B =
(X — {p}) x {0}. The reason is that if U is open and A C U, then B(\U~ # @.
Suppose U is open and A C U. For clarity, replace U with U ((X x (0, 1]), which
is still open and contains A. For each x € (0, 1], choose open neighborhoods V. of
p in X and W, of x in (0, 1] for which V, x W, C U, this is possible since our
new U is open in X x (0, 1]. The sets {W,} cover (0, 1] and (0, 1] is Lindel6f, so
there exists X1, ..., X,,...such that (0, 1] = |J Wy,. Set V = (" V,,. Then {p} S V
since { p} is not a G5 (Proposition A.19 and Corollary A.20). But: If y € (0, 1], then
there exists n such that y € W, , so

V x{y}CVy, xW,, CU.

Hence V x (0,1l C U,and BNU~ D> BNV x(0,1])~ D (V—{p}) x{0}. O

Now for the final topic, which is not really topology, and does not connect with
anything. It concerns imbedding a normed space in its completion, as described
in the proof of Proposition 5.28. The situation there was that X was a normed
space, and the isomorphic (and isometric) copy Jyx (X) was a literal subspace of
its completion (which was its closure in X **). The construction here is general,
and applies when we have a mathematical object X which is isomorphic to a
mathematical object Y, which (in turn) imbeds in a mathematical object Y. The
idea is to produce an isomorphic extension X of X of the same type:

~
~

e C >
~C ~

~
~

Examples of this kind of thing abound; the usual proof that any metric space
X has a completion actually produces a completion of an isometric copy of X.
Similarly, the proof in algebra that a polynomial over a field has a splitting field
actually produces an extension of an isomorphic copy of the field. The same applies
to quotient fields of integral domains, and this illustrates where the problem lies.

Start with Z, the integers. To get to C, first construct QQ (the quotient field), then
R (the completion of Q), then C (the splitting field of x2 4 1). When carrying out the
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last part, the ordered pair (1, 2) will be 1 + 2i. Or will it? (1, 2) is taken! It already
was used in the first part to stand for % The point is that we cannot just take X to
be X U(? —Y)since X and Y — Y may already overlap.

Here is how to do it. Construct an object Z which is isomorphic to Y and which
is (set theoretically) disjoint from everything already used (X | IA’). We now have

Y~ Z Image of
U U Y under
X~Y~Z Y =, 7
H
Shorten this to

Z

U

X~Z

and set ){ =X U(Z — Z). Copy the structure of ZtoX; roughly speaking, remove
Z from Z and replace it with X:

Z gets an “object transplant.”

Any time the preceding makes sense, this construction can be carried out. While
it is possible to be precise about this, the required subject is category theory.
However, in most cases, it is fairly clear what is needed:

1. Our mathematical objects are sets with additional structure.

2. Our isomorphisms are bijective set functions.

3. Given a set Z in one-to-one correspondence with our object, the entire structure
of our object can be copied onto Z.



Appendix B
Closed Graphs in Topological Groups

It has already been noted in Sect. 4.4 that a version of the open mapping theorem can
be proved for topological groups. The same holds for the closed graph theorem. Both
follow from a single, rather complicated lemma (Lemma B.2 below). The results
here are not very well known, although they do appear in Kelley [20, pp. 213-4].
The problem is that the results are not really as useful for topological groups because
there is no analog of the “barreled” condition.

The first result isolates what a closed graph actually does here. (Recall that
the graph of a homomorphism is a subgroup of the product.) In the proof of
Theorem 4.37, this was the last step. Although the approach here is modeled on
Theorem 4.37, it seems best to clarify at the start what “closed graph” means for us.

Proposition B.1. Suppose G and G are topological groups, and H is a closed
subgroup of G x G. Let

7:GxG— Gand
7:G6xG—>G

denote the canonical projections, and set ¢ = w|H, ¢ = w|H. Let B, denote a
neighborhood base at the identity e of G. Then forall g € G:

P @) = ) (@' (gB)".

BeA,

Proof. g € gB,so ¢7'(g) C ¢7'(gB), so pl¢7'(g)) C ¢(p'(gB) C
¢(p~"(gB))” forall B € %,. Hence ¢(¢p~'(g)) is contained in the intersection.

Suppose & € ¢ (¢~ '(gB))~ for all B € %,. Suppose U is open in G and V
is open in G, with ¢ € U and § € V. Then there exists B € %, with gB C U.
Now g € ¢p(p ' (gB))",s0 VNgp(p'(gB)) # B, say y = ¢((x,y)) € V
((x,y) € 9~ (¢gB)N H),and x = ¢((x,y)) € gB C U (since (x,y) € ¢~ ' (¢B)).
Then (x,y) e U xV N H.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 187
DOI 10.1007/978-3-319-02045-7, © Springer International Publishing Switzerland 2014
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We have just demonstrated that if U is open in G and V is open in G, with
(g.8) e U xV,thenU xV N H # @. Thus, (g,g) € H, since H is closed. But

now (g.8) € 9~'(g), and g € ¢ (¢~ (8)). O
Now for the complicated lemma.

Lemma B.2. Suppose G.G, and H are Hausdorff topological groups, with G
being first countable and complete. Suppose B, = {B1, B2, ...} is a neighborhood
base at the identity e of G, consisting of closed sets, satisfying B; = Bj_l D B]2.+1.
Suppose ¢ : H — G and ¥ : H — G are two homomorphisms satisfying the

following two conditions:

VeeG (e (9) = \ve ' (gB))~ (%)
j=1
Vij: lp(qo_l(Bj))_ is a neighborhood of the identity é of G. (%)

Then: ¥ (¢~ (B1)) D ¥ (¢~"(B))".

Proof. The idea is this. Suppose & € ¥ (¢~ '(B))~. We shall produce elements
X, € By, with x; = e, so that y = []x, converges. Now xjxp---x, =
X2X3+++X, € By--- B, C Bj,s0y € Bj since B is closed. Finally, we show there

exists i € H with p(h) = y and y(h) = g (e, § € Y(9~' () C ¥ (9™ (B1))
by showing that & € ¥ (¢~ (yB;))~ for all j, and then applying ().
To start with,

gev(p™(B)” Cylp™ (B) - ¥(p~ (By)~

by Proposition 1.9, since ¥ (¢~'(B3))~ is a neighborhood of é. Hence, we
can choose x, € B;, and hy € H, for which ¢(h;) = x; and g €

V(ha)Y (¢~ (B3))~, that is
Y(h)~'g € Yo~ (B3) .

Now repeat: Given x; = e and x5 - -+ x,,, and hy - - - h,, for which ¢(h;) = x; and

Y)Y (1) 7' g € YT (Bus1)T C Y (9T (But1) - ¥ (9 (But2) ™,
choose X1 € Buy1, and hyry € H, with @(hys1) = Xni1, and
Y)Y (h2) 7' g € Y(har )Y (97 (Buta))”
so that
Y(har))™ Y (1) 7'& € Y@ (But2)) ™

Now form the infinite product y = [ x,. We need to show that § € ¥ (¢~ ' (yB;))~
forall j.
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Fix any positive integer j. Note that for n > j + 3, xj42X;43---x, €
Bj12Bj+3--- B, C Bj4q, 50

—1 1

- -1 . -1 -1 -1
X X s X = hm X : X cee X Xy XiX; cee X
jH1X 2 V= MY 2 X2 i Xi+1 n

= nlig}oxj-l—Z"'xn € Bj1

since Bj 1 is closed. Hence y ™ 'x; -+ x4y = (x;_il---xgly)_l € Bj__lH = Bj11,
SO Xp-+-Xj4+1 € yBj41. Now suppose ¢(h) € Bjir. Then ¢(hy---hji1h) =
@(ha)--phj11)ph) = x2---xjp19(h) € yBj11Bjy> C yB;. That is,
hy--+hjt1h € @ '(yB;). Since h was arbitrary in ¢~ !(B;42), we get that
hy---hjy197 (Bj+2) C ¢~ '(yB;). But by construction; and noting that ¥ (hA) =
VY (h)y(A) forany h € H and A C H, and (XB)” = X(B™) forany x € G and
B CG:

Yhjr)™ ()78 € Y97 (Bj12)) 7, s0
geyhy) - yhjt)¥ (9~ (Bj+2)~
= Y(ha---hjs)¥ (@~ (Bj+2)”
= (Y(ha---hj+ )V (@™ (Bj+2)~
=Yy hjt19” " (Bj12)”
C (e (vB))~

as required. O

To formulate the open mapping and closed graph theorems for topological
groups, we need two definitions, one of which has already appeared in disguise
(Corollary 4.33).

Definition B.3. Suppose G and G are Hausdorff topological groups, with identity
elements e and €, respectively. Suppose f : G — Gisa homomorphism. Then f
is called nearly continuous if /~'(U)~ is a neighborhood of e whenever U is a
neighborhood of ¢, and f is called nearly open if f(U)~ is a neighborhood of ¢
whenever U is a neighborhood of e.

Theorem B.4. Suppose G and G are Hausdorff topological groups, and f : G —
G is a homomorphism whose graph is closed.

(a) (CGT) Assume G is first countable and complete. If f is nearly continuous,
then f is continuous.

(b) (OMT) Assume G is first countable and complete. If f is nearly open, then f
is open.
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Proof. (b) first. Assume f is nearly open. Let H denote the graph of f, denoted by
H =T(f),and

7:G6GxG =G
7:G6xG—=>G
¢ =nlu,¥ =7ln

as in Proposition B.1. Now let U be any neighborhood of e. Choose a neighborhood
base at e, B, = {Bj, B>, ...}, in accordance with Theorem 1.13, in such a way that
B; = Bj_l ») B}H, all B; are closed, and By C U. Then condition (x) holds,
thanks to Proposition B.1.

Suppose A C G. Then

e ' (A) = {(x, f(x)) e GxG :x € A}
and ¥ (97" (4) = {f(x) : x € 4}
= f(A).

That is, condition (*%) is simply the statement that f(B;)™ is a neighborhood of &
for all j, which is also true since we are assuming that f is nearly open. We now
have that f(U) D f(B1) D f(B,)~, a neighborhood of ¢. Hence f is an open
mapping by Proposition 1.26(b).

(a) Assume f is nearly continuous. Here, we have to reverse the roles of G and
G, so G is first countable and complete, while we work with ¢(y~! (sets in G)).
Now let U be any neighborhood of &. Choose a neighborhood base at é. %; =
(El, B’z, ...}, in accordance with Theorem 1.13 in such a way that Bj = Bj_l )

1;’12 T all B ; are closed, and 1;’1 C U. Then condition (*) holds, thanks to
Proposition B.1.
Suppose A C G. Then

A = {(x, f(x) €Gx G : f(x) € A)
and (Y~ (A) = {x € G : f(x) € 4}
= /7'
That is, condition (%) becomes simply the statement that f~'(B ;)” is a neigh-
borhood of e for all j, which is also true since we are assuming that f is nearly

continuous. We now get that £~ (U) > f~'(B)) D f~'(B,)", a neighborhood
of e. Hence f is continuous by Proposition 1.26(a). O

Of course, verifying all that “nearly” business puts a severe crimp in applications
to topological groups. However, it does clarify at least two things:

1. There really is an underlying theme to the closed graph theorem and the open
mapping theorem, even in general; namely, Lemma B.2.
2. The “barreled” condition, available for functional analysis, is really helpful there.
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Left as an exercise is the analog of Corollary 4.33:

A homomorphism f : G — G, where G and G are topological groups, is
nearly continuous if, and only if, it has the (purely topological) property
that f~'(U) C int(f~Y(U)™) for all open U C G.



Appendix C
The Other Krein—-Smulian Theorem

The Krein—Smulian theorem, which appears in Sect. 6.2, is not the only Krein—
Smulian theorem. There is another, which states (in its simplest form) that in a
quasi-complete Hausdorff locally convex space, the closed convex hull of a weakly
compact set is weakly compact. In functional analysis textbooks that deal primarily
with Banach spaces, this version is the Krein—Smulian theorem, although some
books (e.g., Dunford and Schwartz [12] and Conway [7]) cover both versions.
In textbooks that treat general spaces, the Krein—Smulian theorem is Corollary 6.8,
and the result to be discussed in this appendix is simply called Krein’s theorem.

There actually is a reason for this. The result was first proved by Krein [23] for
separable Banach spaces and then generalized to all Banach spaces in a joint paper
by Krein and Smulian [24]. The generalization to quasi-complete spaces seems to be
due to Grothendieck [16], who simply called it Krein’s theorem. The name “Krein—
Smulian II” is used here simply because it is so generally recognized as a “Krein—
Smulian” theorem.

There are basically two approaches, both of which require some version of
Eberlein’s theorem. One uses iterated limits, and a combined version of Eberlein’s
theorem with Krein—Smulian IT appears as Theorem 17.12 in Kelley and Namioka
[21]. The iterated limit gimmick is due to Grothendieck, and the proof is direct
but very messy. The approach here is sometimes called the “integral” approach,
although the interpretation as an integral is only after the fact; the relevant map is
really an adjoint. The primary advantage is that Eberlein’s theorem is only needed
for Banach spaces, where a much simpler proof is available; the approach below to
Eberlein’s theorem is a hybrid of the argument by Dunford and Schwartz [12] and
that of Narici and Beckenstein [27].

Lemma C.1. Suppose X is a normed space, and suppose Y is a finite-dimensional
subspace of X*. Then there exist x1,...,Xu € X, with ||x;|| = 1 for all j, such
that forall f €Y :

1
SN = max [ £Gxj)l.

M.S. Osborne, Locally Convex Spaces, Graduate Texts in Mathematics 269, 193
DOI 10.1007/978-3-319-02045-7, © Springer International Publishing Switzerland 2014
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Proof. Letn = dimY, and start with xy,...,x, € X chosen so thatall ||x;| = 1,
and{x; +Y1:j =1,....,n}isabasisof X/Y, the dual of Y (weak-* topology).
The map

S(x1)
f : cR" or C"

S (xn)

is a topological isomorphism (Proposition 2.9), so {f € ¥ : | f(x;)| < 1 for j =
L,....,n} ={x1,...,x,}° (Y is compact. But letting S = {x € X : ||x| = 1},

verasi=n=( U txaUr) N

FCS
F finite

- N (({xl,...,xn}UFfﬂY).

FCS
F finite

If F C S, with F finite, set

Kr = (tx oo UF) (Y =15 v sl <2

Each K is compact, and K¢ () Krr = Kp | pr. Since () K = @, there must exist
F = {xy41,..., Xy} such that Kp = @. Thatis, {x1,...,x,}° (Y C{f €Y :
/1 <2}

Suppose f € Y and m = max|f(x;)| > 0. Thenm™ f € {xi,...,xx}°, s0
lm='f|| <2, thatis, || f|| <2m.(Ifm = 0, then f = Osinceall f(x;) =0.) O

Lemma C.2. Suppose X is a Banach space, and suppose A is a weakly sequentially
compact subset of X. Suppose @ belongs to the weak-* closure of Jx(A), and
fio.oo, fm € X*. Then there exists x € X such that @(f;) = f;j(x) for j =
1,...,m.

Proof. For all n, the set

Tx(A) ([ € X** |0 (f;) — d(f)] < %forj =1,....m}

is nonempty; choose x, € A so that

D(f;) — £ (xa)] < %forj —1...m

The sequence (x,) has a weakly convergent subsequence (x,, ) since A4 is weakly
sequentially compact; say x,, — x. Then f;(x,,) — f;(x) for all j. But by
definition, f;(x,) — @(f;) forall j,so @(f;) = f;(x) forall j. O
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Lemma C.3. Suppose X is a Hausdorff locally convex space and suppose A is a
bounded subset of X. Then A is weakly compact if, and only if, Jx(A) is weak-*
closed in X**.

Proof. Jx : (A, weak topology) — (Jx(A), weak-* topology) is a homeomor-
phism, so if 4 is weakly compact, then Jy (A4) is weak-* compact, hence is weak-*
closed in X**. On the other hand, since 4 is bounded, A° is a strong neighborhood
of 0in X*, so A°° is weak-* compact in X** (Banach-Alaoglu). But by definition,
Jx(A) C A°°, soif Jx(A) is weak-* closed, then Jy (A4) is weak-* compact, which
makes A weakly compact. O

Theorem C.4 (Eberlein). Suppose X is a Banach space, and A is a weakly
sequentially compact subset of X. Then A is weakly compact.

Proof. First of all, A is bounded: Suppose f € X*. If f(A) is not bounded, then
there exists a sequence (x,) in A for which | f(x,)| > n. That would mean that
(x,,) could not have a weakly convergent subsequence (since | f(x,,)| — oo for
any subsequence), a contradiction. Hence f(A) is bounded for all f € X*, so A4 is
bounded by Corollary 3.31.

The proof is completed by showing that Jx(A) is weak-* closed in X** and
quoting Lemma C.3; Lemmas C.1 and C.2 are used to show that Jx (A4) is weak-*
closed in X**. If X = {0} there is nothing to prove, so assume X #* {0},
and @ belongs to the weak-* closure of Jx(A). Set ¥Y; = span{@®}, and choose
{fioooo Sy © X5 all | f5]l = 1, with 3| W] < max{|¥(f))]:j = L.....ni}
for ¥ € Y;. (Lemma C.1. Note: We can take n; = 1, but that doesn’t matter.)
Choose x; € A so that fj(x;) = @(f;) for j = 1,...,n;, using Lemma C.2.
Set Y, = span{®, Jx(x1)},.... In general, given @, x,..., X5 fi,:-* fn,. and
Ying1 = span{@, Jx(x1),...,Jx(xn)}, subject to @(f;) = f;(xy) for j =

1,....ny: Recursively choose f,+1..... fu,,, € X*, with || f;] = 1 all j,
for which %||11/|| < max{|¥(fi)| : J = nm+1,.. 001} for ¥ € Y,qy;
choose x,,+1 € A for which @(f;) = f;j(xm41) for j = 1,...,n,41; and set

Yito = span{®@, Jx (x1), ..., Jx (X1}

The preceding produces an ascending sequence of finite-dimensional subspaces
Y, in X**, and a sequence (x,,) in A. Since A is sequentially compact, there is a
subsequence x,,, which converges weakly to x € A. The claim is that Jy(x) = &.
There are four parts to this.

First of all, given any j, once m; > j we have that @(f;) = f;(xu,), so taking
the limit, @(f;) = f;(x) forall j.

Second, set Y = |J Y. If W € Y4y, then

1 .
SN = max((F ()l j = nm +1.....nn41)
=< sup{|¥ (/)] : all jj,

so the inequality %||11/|| < sup|¥(f;)| holdsforall¥ €Y.
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Third, this inequality also holds for ¥ € Y, the norm closure of Y : Suppose
¥ € Y~ and ¢ > 0. Choose ¥, € Y for which || — ¥,|| < ¢, and choose jj for
which 3 ||| < | f,(Wo)| + . Then since || f,|| = 1:

1P1 = ¥ + (& =)l = ¥l + ¥ — %l < 1]l + € and
| fio (W0 = | fio(¥) + fjo(Wo — V)| = | [ ()] + | fjo(Wo — W)
<|fjo(¥)| + &, giving
[P =< ¥l 4+ & < 2| fjo(Po)| +2e + ¢
<2|fjy(¥)| +2e + 3¢
< 2sup{| f; ()]} + 5e.

This holds for all & > 0, so 3[|¥|| < sup [¥(f;)| forall ¥ € Y.
Finally, Jx(x) € Y 7: x is the weak limit of (x,, ), so there exists a sequence
(yx) for which

Vi € con{xnk,xnk+l,...,}

and yr — x in norm, by Exercise 20, Chap. 3. But every Jx(x,) € Y, so
Jx(yx) € Y. Since Jy is an isometry, Jx (yx) — Jx(x) in norm.
Now we are done: Y ~ is a subspace, and @, Jx(x) € Y, so

1
S1P = Jx(@) = sup|(P — Jx(x)) ;]

= sup [®(f;) = f;(x)| = 0.
o

The next subject is really the production of a set to which Eberlein’s theorem
applies. Suppose X is a Hausdorff locally convex space, U is a barrel neighborhood
of 0in X, and K is a weakly compact subset of X. Then U° is a weak-* compact
subset of X *. We are interested inthe set A = { f | : f € U°} asasubset of C(K),
the eventual claim being that A is weakly compact in the Banach space C(K).
Unfortunately, the map f +— f|g from (X*, weak-* topology) to (C(K), weak
topology) need not be continuous, which is why the digression through sequences
is necessary. Suppose ( f,,) is a sequence in U°. The space X, as well as A4, K, and
( f), will be as above in Lemmas C.5-C.8.

Lemma C.5. Every weak-* cluster point of { f,) belongs to U° N (Nker( f; )t
Proof. U® N (Nker(f;))* is weak-* closed, and contains every f;. O

Now let IF denote the base field, and define

f=(filx): K- []F

Jj=1
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[T is given the product topology, and it is metrizable (Corollary A.4). The function
f is continuous (Theorem 1.18), so f(K) is a compact metrizable space. Choose a
countable set D C K so that f(D) is dense in f(K).

Lemma C.6. There is a subsequence { f,) that converges pointwise on D.

Proof. Cantor diagonalization: If D = {p;, p», ...}, choose a subsequence ( f,, ,)
for which { f,, . (p1)) converges; choose a subsequence ( f,, ) of {f,,) for which
(fn,,(p2)) converges, .... Then { f,, ) convergeson D. O

Lemma C.7. Suppose f and g are two weak-* cluster points of ( f,,) in U°, where
(fn,) is as in Lemma C.6. Then f|g = glk.

Proof. By Lemma C.5, both f and g vanish on Nker(f;), soif f(x) # f(y) then
x—y & Nker(f;),sosome f;(x) # f;(y).Itfollows that there exists F : f(K) —
F for which f = F of; similarly, g = Gof forsome G : f(K) — F. These functions
F and G are continuous (Corollary A.10), and f,, (p) — r, for p € D implies that
f(p) = rp since f is a cluster point of ( f,, ). (Otherwise, if | f(p) —r,| =& > 0,
then f,, does not eventually enter {h € X* : |h(p) — f(p)| < &/2}.) In particular,
F(f(p)) = rp, and similarly G(f(p)) = r,. In particular, F agrees with G on f(D),
which is dense in f(K), so F = G. Hence

flk = Fof=Gof=glk.
O

Lemma C.8. If (f,,) is as in Lemma C.6, and f is a weak-* cluster point of { fp, )
inU®, then f,, — f pointwise on K.

Proof. Suppose ( f,,k/_) is a subsequence of ( f, ). Then ( fnkj) has a cluster point
g in U®, and this g is also a cluster point of {f;,), so f|x = g|k. In particular,
f|k is a cluster point of (f,,k/_ |k}, 80 fulk = S|k pointwise (Proposition A.6),
since pointwise convergence is convergence in a topology (the product topology on

[T . o

Proposition C.9. Suppose X is a Hausdorff locally convex space, U is a barrel
neighborhood of 0 in X, and K is a weakly compact subset of X. Set A = {f |k :
f € U°}. Then A is weakly compact in the Banach space C(K).

Proof. In view of Eberlein’s theorem, it suffices to show that A is sequentially
compact. Suppose ( f,|x) is a sequence in A. Then there is a subsequence ( f;, |x)
that converges pointwise on K. Taking f,, € U° which give the correct restrictions
to K, the sequence ( f,,, ) does have a weak-* cluster point f in U° (Proposition 1.5),
so that f,, — f pointwise on K. Also, K is weakly bounded, so it is bounded
(Corollary 3.31), so K C cU for some ¢ > 0. Hence for x € K, c'x e U =all
Ifnk(c_lx)| <1 =all |fnk(x)| =c.

Suppose ¢ € C(K)*; then ¢ is represented by a (signed or complex) measure p,
and we can write

p(h) = /Kh(X)X(X)dIMI(X),h € C(K)
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for some Borel function y for which |x(x)| = 1. Since the weak topology on
C(K) is “really” a product topology over C(K)* [the weak-* topology on C(K)**
(Proposition 3.24) transported back to C(K)], it suffices to show that ¢( f, |x) —
@(f|k) for all such ¢ in C(K)* (Proposition A.2). But

Jim [ fu@reodlue) = [ f@reodlue)

by the Lebesgue Dominated convergence theorem (dominated by ¢). O
We can now prove:

Theorem C.10 (Krein—Smulian II). Suppose X is a quasi-complete Hausdorff
locally convex space. Then the closed convex hull of a weakly compact subset of
X is weakly compact.

Proof. Suppose K is a weakly compact subset of X. The trick involves a judicious
choice of topologies. First, define T : X* — C(K) by T(f) = f|k. Then by
definition, the inverse image under T of the closed unit ball in C(K) is precisely
K°, a strong neighborhood of 0 in X*, so T has an adjoint 7* : C(K)* — X**.
This 7* can be interpreted using integrals, but this is best done after the fact.

Let C(K)r. denote C(K)* equipped with the weak-* topology, and let X *¥
denote X ** equipped with the weak-* topology.

Letting X,, denote X equipped with the weak topology, note that Jy : X,, —
Jx(X) C XI is a homeomorphism. Also, T* : C(K)*. — X! is continuous
(Theorem 5.2).

The other topology to be considered on C(K)* is the Mackey topology associ-
ated with the weak-* topology, the base being all A°, where A is weakly compact
and convex in C(K). Continuous linear functionals in this topology are evaluations
at points of C(K). (See Proposition 3.27 and the surrounding discussion.) Let
C(K)3, denote C(K)* equipped with this topology.

The other topology to be considered on X** is a new one, the “transported”
topology, where a base at 0 consists of all U°°, where U is a barrel neighborhood
of 0 in X. If A is bounded in X, then U absorbs A, so A° absorbs U°
[Theorem 3.20(f)], that is U° is strongly bounded in X*, so U°° is a strong
neighborhood of 0 in X**. Furthermore, U NV C U = (UNV)° D U° =
(UNV)°® Cc U°°. Hence (UNV)°® C U°°NV°°, so the conditions in Theorem 3.2
are verified. The topology given by all such U °° is coarser than the strong topology
on X**.

Suppose F is a finite subset of X*. Then the weak and weak-* topology on
span(F) agree (Proposition 2.9), and span(F) is a closed (both weak and weak-*
by Corollary 2.10), convex, balanced, nonempty subset of X*, so (F°), = (F,)° C
span(F) by Theorem 3.20(b). But F, is a barrel neighborhood of 0 in X, so

(Fo)*° = ((F5)°)° = ((F®)o)° = F° (bipolar theorem)

is a transported neighborhood of 0 in X **. In particular, the transported topology
is finer than the weak-* topology, so it is Hausdorff. Let X,** denote X ** equipped
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with the transported topology. Then for U a barrel neighborhood of 0 in X,
JyN(U°°) = (U°)s = U by Theorem 5.10(b) and the bipolar theorem. Also,
Jx(U) = Jx((U®)o) = U°° N Jx(X) by the same two results, so Jy : X —
Jx(X) C X** is a homeomorphism.

Finally, T* : C(K)}, — X/* is continuous, since 7*~1(U*°) = T(U°)° is a
Mackey neighborhood of 0 in C(K)* when U is a barrel neighborhood of 0 in X,
by Proposition C.9.

Now let K denote those members of C (K)* that are represented by positive
measures of total mass 1. This is a weak-* closed, convex subset of the closed unit
ball in C(K)*, since it can be defined by “p(f) > 0 when f > 0, and ¢(1) =
1" K is therefore weak-* compact. The claim is that T*(K) C Jx(X), so that
Ji! (T*(Ie )) is a weakly compact, convex subset of X that contains K, forcing the
closed convex hull of K to be weakly compact.

First of all, if x, is a point measure at p € K (ie. [ fdu, = f(p)), then
T*(up)(f) = [ fdpp, = f(p) = Jx(p)(f),s0 Jx(p) = T*(up). In particular,
JNT*(uy)) = p € K, 50 K C Jy'(T*(K)). Also, K is the closed convex hull
of its set of extreme points £ (12 ) (Krein—Milman theorem), and E (12 )={u,:pE€
K} by Corollary A.18. Since T*(E(K)) C Jx(X), we get that T*(con(E(K))) C
Jx (X). .

Now take the Mackey closure of con(E(K)). This is contained in the weak-*
closure of con(E(K)) simply because the weak-* topology is coarser, but since the
Mackey closure of con(E (12)) is convex (Proposition 2.13), it is already weak-*
closed by Theorem 3.29. Hence each element p in K is the Mackey limit of
a net (itg) from con(E(K)) (Proposition 1.3(a)). Since T* : C(K)}, — X *
is continuous, lim7*(uy) = T*(u) in X**. Since (T*(ue)) is a convergent
net, it is a Cauchy net (Proposition 1.29), and since each u, € con(E (1%));
each T*(jy) € Jx(X). That means that (J5'T*(uy)) is a Cauchy net in X
in the original topology. Also, each J;!(T*(u,)) is a convex combination of
elements of K by earlier considerations, so J5 ' (T*(iq)) € (K°)o, a bounded
set [Theorem 3.20(d)]. Since (J5'(T*(ite))) is a bounded Cauchy net and X is
quasi-complete, (J5!'(T*(i)y))) is convergent. If x = lim J3'(T*(1q)), then
Jx (x) = lim T* (i) in the transported topology so Jx (x) = T*(u) by uniqueness
of limits. Since p was arbitrary, T*(Ie ) C Jx(X). As noted earlier, this completes
the proof. O

Remark. Since everything in Jy 1(T*(Ie )) is a limit of a net from con(K),
J N (T*(K)) actually is the closed convex hull of K.

Corollary C.11. Suppose X is a quasi-complete Hausdorff locally convex space,
and suppose K is a weakly compact subset of X. Then (K°). is weakly compact.

Proof. (K®). is closed and convex, so con(K)~™ C (K°).. Hence (con(K)™)°
D ((K°o)° = K° But K C con(K)7, so K° D (con(K)™)°. Combining,
K° = (con(K)7)°. Hence (K°)o = ((con(K)7)°)o, a weakly compact set by
Theorem C.10 and Proposition 3.21. O
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Application: Weak Integrals

Weak integrals for Hilbert-space-valued functions have already appeared, in
Chap. 4, Exercise 22. Reformulating, start with a measure space (K,#,u), a
Hausdorff locally convex space X, and a function ¢ : K — X that is weakly
integrable in the sense that [ o¢] € L!(u) forall f € X*.If X is a Hilbert space,
then f +— [ f o @(t)du(t) is evaluation at a point of X, since:

1. f + [f o¢]is alinear map from X* to L'(1) which has a sequentially closed
graph, so it has a closed graph since X * is first countable.

2. f  [f o ¢]is continuous since X * is barreled (closed graph theorem).

3. f = [ foe(t)du(r) is evaluation at a point of X since X is reflexive.

In particular, weak integrals can be defined in general for reflexive Banach or LB-
spaces. To get anything more general requires some restrictions. First, a generality.

Proposition C.12. Suppose (K, B, |1) is a measure space for which p(K) =1, X
is a Hausdorff locally convex space, and ¢ : K — X is a function for which f o ¢
is pu-integrable for all f € X*. Assume ¢(K) is bounded in X. Then

i /K Fle)du(t) *

is a strongly continuous linear functional on X* that belongs to the weak-* closed
convex hull of Jx (¢(K)).

Proof. If f € ¢(K)°, then

' / Flo)du)
K

< / flp)ldu() < 1,
K

so the linear functional (x) maps ¢(K)° into the closed unit “disk” in the base field,
and so is strongly continuous.

If @ does not belong to the weak-* closed convex hull of Jy (¢(K)), then there
exists a weak-* continuous linear functional on X** that separates @ from that
convex hull as described in Corollary 3.11 (and Proposition 3.14): there exists
f € X* such that Re®(f) > 1, but Re(Jx(¢(t))(f)) < 1 forallt € K,
that is 1 > Ref(¢(t)) for all t € K. Hence 1 > fK Ref(e(t))du(t), so

D(f) # [ f(p(t))du(r) and (x) does not define . ]

Corollary C.13. Suppose K is a compact Hausdorff space, [ is a finite Radon
measure on K, X is a quasi-complete Hausdorff locally convex space over F = R
orC, and ¢ : K — X is a function for which f o ¢ is p-integrable for all f € X*.
Assume that ¢(K) is contained in a weakly compact subset of X. Then there exists
x € X such thatforall f € X*:

Fx) = /K Flo)dp@).

In particular, this holds if ¢ is weakly continuous, that is if f o : K — F is
continuous for all f € X*.
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Remark. This x is called the weak integral, or the Pettis integral, of ¢. It is written
simply as x = [ @(t)du(1).

Proof. If ¢ is weakly continuous, then ¢(K) is weakly compact. If ¢(K) C K;
with K being weakly compact, let K, be the closed convex hull of ¢(K) and K3
the closed convex hull of K. Then K3 is weakly compact by Krein—Smulian II, and
K, C K3, s0 K, is weakly compact.

Letc = pu(K).If ¢ = 0, then x = 0 will do. If ¢ > 0, replace u with
v = ¢ ' and ¢ with ¥ = cg@: The closed convex hull of ¥ (K) is cK», which is
compact, and since [, f(¢(1))du(r) = [; f(¥(1))dv(t), by Proposition C.12 the
integral defining () there is given by an element of the weak-* closed convex hull of
Jx (¥ (K)). But Jx(cK3) is weak-* compact and convex, and contains Jyx (Y (K)),
so the integral defining (x) is given by an element of Jy (cK3). That is, there exists
x € ¢k, for which (for all f € X™*):

ﬂm=uuxﬂ=ﬁf@mwmm
O

Now for the interpretation of the map in Krein—Smulian II as an integral.
Discontinuing the abuse of notation, if p is the measure representing a member
fu of K in the proof of Theorem C.10, then

wawm»zﬁmm&

In general, if M is a locally compact Hausdorff space, u is a Radon measure on
M, X is a Hausdorff locally convex space, and ¢ : M — X is weakly integrable
(i.e. f o ¢ is integrable for all f € X*), then

X = /Mqo(t)du(t) means

erX“f@%ijWMMM&

The integral is again called a weak integral or a Pettis integral. Corollary C.13 gives
a condition that guarantees its existence in the compact case. A closer examination
of the compact case leads to what we need in general. To this end, assume K is
compact and p is a Radon measure on K. In order to approximate [, ¢(t)du(t)
with integrals over “large” subsets, the correct analog is Lusin’s theorem.

Definition C.14. Suppose M is a locally compact Hausdorff space, pu is a finite
Radon measure on M, X is a Hausdorff locally convex space, and ¢ : M — X is
a function for which f o ¢ is Borel measurable for all f € X*. Then ¢ is nearly
weakly continuous if for all £ > 0 there exists a compact set K, C M such that ¢
is weakly continuous on K, and u(M — K,) < ¢.
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Proposition C.15. Suppose M is a locally compact Hausdorff space, | is a finite
Radon measure on M, X is a Hausdorff locally convex space, and ¢ : M — X
is a nearly weakly continuous function. If p is a continuous seminorm on X, then
p o ¢ is Borel measurable on every compact subset K C M on which ¢ is weakly
continuous, and p o ¢ is measurable on M with respect to the completion 1. of |L.

Proof. Suppose ¢ is weakly continuous on K, and p o ¢(fy) > r. On Re(#), set
g(Ae(10)) = Ap(p(10)) (so that g(¢(t)) = p(¢(f0)). Then g < p on Re(1), so
g extends to a continuous, real-valued linear functional on X for which g < p.
(Hahn-Banach theorem). If the base field is R, set f = g. If the base field is C,
choose f € X* sothat Ref = g (Proposition 3.14). In either case, Ref < p, and
Ref(p(ty)) > r.hence {t € K : Ref(p(t)) > r} is a relatively open subset of K,
containing fy, on which p(¢(¢)) > r. What all this shows is that { € K : pog(t) >
r} is relatively open in K, so p o ¢ is Borel measurable on K.

In general, p o ¢ is Borel measurable on each compact Ki,,, where p(M —
Kim) < nl, so p o ¢ is Borel measurable on UK. Since u(M — UKy,,) = 0,
p o ¢ is measurable on M with respect to the completion of . O

We are almost there. One last thing, stated in the general form eventually needed:

Proposition C.16. Suppose M is a locally compact Hausdorf{f space, |4 is a Radon
measure on M, X is a Hausdorff locally convex space, and ¢ : M — X is a
function for which [ o ¢ is u-integrable on M for all f € X*. Suppose ¢ has a
weak integral x; that is, suppose for all f € X*:

ﬂﬂ=A/@@MM&

Suppose p is a continuous seminorm on X for which p o ¢ is ji.-integrable, where
WU is the completion of . Then

mmsAﬁWMMmm.

Proof. Suppose p(x) = r. As in the proof of Proposition C.15, choose f € X* for
which Ref < p and Ref(x) = r. Then

p(x) = Ref(x) = /M Ref(p(t))dpc(t) = /Mp(qﬂ(l))duc(t)-

|

In defining a weak integral for a nearly weakly continuous ¢, some kind of
approximation would be needed, and something approaching “absolute continuity
of integration” would also be needed. Put together, this leads to the following:
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Theorem C.17. Suppose M is a locally compact Hausdorff space, |4 is a Radon
measure on M with completion ji., and X is a quasi-complete Hausdorff locally
convex space. Suppose ¢ : M — X is a function for which the following happens:

(i) Foreach f € X* : f o ¢ is Borel measurable on M ; and

(ii) For each continuous seminorm p on X, p o ¢ is [L.-integrable on M ; and for
each ¢ > 0, there exists a compact set K C M such that ¢ : K — X is weakly
continuous (i.e., for each f € X* : f o ¢ is continuous) and

/ p(p(t))duc(t) < e.
M—-K

Then: ¢ has a weak integral. That is, there exists x € X for which

fx) = /M Flo)du(t) forall f € X*.

Proof. First note that if f € X*, then | f| is continuous seminorm on X, so f o ¢
is actually integrable on M . To produce x, set

D = {K C X : K is compact and ¢|g is weakly continuous}.
D is directed by set inclusion (K < K’ when K C K’) since if ¢ is weakly

continuous on K| and K>, then ¢ is weakly continuous on K| U K;. (Look at the
inverse image of a weakly closed set.) If K € D, set

k= /K (D) du (1),

which exists by Corollary C.13. The proof will be completed by showing that (xx :
K € D) is a bounded Cauchy net, hence converges to some x € K (since X is
quasi-complete), and this x is the weak integral of ¢.

First of all, if U is a barrel neighborhood of 0, and py is its Minkowski
functional, then by Proposition C.16:

puex) < /K pu(p)du() < /M o) die(0).

Hence all xg € cU if ¢ > fM pu(p(t))du.(t). Letting U vary: (xg) is bounded.
Back to our fixed U, choose K € D so that

/ pu(e)du.(t) < 1.
M—-K

If Ki,K; € D with K, K; D K, set K1AK, = (K; — K3) U (K; — K;) and
Ky = K; N K;. Then forall f € X*:
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fxk, —xk,) = f(xg, — xk) — f(xk, — Xk)

- / Flp)du(t) - / Fe)du(t)
K Ko
— d — d
( /K o)) /K oy

— liftre K1 — K>
_ /KIMZ f({ s Kz_Kl}qo(t))du(t).

Hence by Proposition C.16, since xg, — Xk, is a weak integral over K; AK>:

pu ek, — xx,) < / pu(@©O)dpe (1)

Ki1AK>

< / pulO)dpe(t) < 1,
M—K

so that xg, — xg, € U. Again, letting U float, this shows that (xx : K € D)
is a Cauchy net. Setting x = limxg, it remains to show that for all f € X*,
fx) = [, fle@))du(r). But this is immediate: If f € X*, then |f] is a
continuous seminorm. For all K € D:

/ | f(p(t))|du(t) <e, and K' D K,K' € D
M—K
d — d
=1 [ Seornw - [ fownauo)

< / | Flp)|du() < e.
M—K'

Since such a K can be chosen, this shows directly that

i [ feoydn) = [ foanauc.

Hence for all f € X*:
70 =lign fexx) = i [ o))

- / Flo)dp@).
M

|

The conditions in this theorem are not really standardized. Some use “strongly
integrable” for this; others mean something entirely different by “strongly
integrable.” Two references worth consulting are Edwards [13, Sect. 8.14] and
Diestel and Uhl [9, Chap. II].
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To close, here is what the Lebesgue dominated convergence theorem looks like
in this setting. Note that it is much less satisfactory than in the scalar-valued case,
since the limit function has to be assumed to be nice.

Theorem C.18 (Lebesgue Dominated Convergence Theorem). Suppose M is a
locally compact Hausdorff space, |4 is a Radon measure on M with completion (i,
and X is a quasi-complete Hausdorfflocally convex space. Suppose ¢, ¢ - M — X
are functions satisfying the conditions imposed on ¢ in Theorem C.17. Then:

(a) If for all f € X*, there exists a u-integrable g : M — R such that g(t) >
| (@, (2))]| for all n and t, and ¢, (t) — @(t) weakly for a.e. t € X, then

/ o0 (A (0) — / o(O)dpu() weakly,
M M

(b) If for each continuous seminorm p on X, there exists a [L.-integrable g : M —
R such that g(t) > p(e,(t)) for all n and t, and ¢, (t) — @(t) in the original
topology for a.e.t, then

/(pn(t)du(t)e/ ©(t)du(t) (original topology).
M M

Proof. (Outline). Part (a) is just LDCT applied to each f(¢,(¢)). Part (b) follows
from LDCT applied to each p(¢(¢)—¢,(¢)) and Proposition C.16; note that p(¢(¢)—

oa(t)) <2g(1) ae. O



Appendix D
Further Hints for Selected Exercises

Chapter 1

12.

Use Exercise 11 and induction: If (G")~ = G, then [GV" GV C
[G",G"]~ C (G"T))~. But G" C G as well (also by induction).

17. d(x7 1, y™Y) =d(xyx~!, xyy™") = d(y, x) since G is commutative.

18. If K/H is closed, look at its pullback in G. If K is closed, then G/H — K /H =
(G — K)/H is open.

20. Open subgroups are always closed. Their complements are the union of their
other (open) cosets.

Chapter 2

2. Use Proposition 2.7(e).

Chapter 3

7.

W is absorbent, so (W,)° is also absorbent. Hence W, is bounded [Corol-
lary 3.31, condition (iv).] But (W,)® is the weak-* closure of W since W is
already convex, balanced, and nonempty. Since V' is weak-* closed ... .

11. Use Fatou’s lemma to show that A is closed in L?(m). (Recall, if needed, that
if ([ f,]) is an L?-convergent sequence of function classes, then ( f,) has an a.e.
convergent subsequence.)

21. Using Exercise 20, choose h, € con{ f,,, fu+1, fu+2,-- -} for which h, — f in
norm. Choose a subsequence /,, — f a.e. Do you see why #, still converges
a.e.to g?

23. Not as weird as it looks: 3%, £, is >"N_ f, on Xy. Consult Corollary 3.41.

Chapter 4

4. If A is bounded in ¥ and x € X, then {B(x,y) : y € A} is bounded
in F since B(x,?) is continuous. Hence {B(?,y) : y € A} is bounded for
pointwise convergence and so is equicontinuous (Theorem 4.16). If U is such
that |[B(x,y)| < 1forx e U and y € A, then {B(x,?) : x e U} C A°.
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10. Much like Theorem 4.24(a), using sequences instead of nets.
19. See Proposition 4.39.
26. Trick Alert: If U C A~ ,theneitherU C A™—Y orUN(A™NY) =UNY # 0.

Chapter 5

14. Pull back to X the norm on X ** which is dual to |||?|]| «.
26. If T(U)~ is compact, then ST(U) C S(T(U)™).
29. Also, use Corollary 3.41.

Chapter 6

3a) One approach, which only requires sequential completeness for Z and weak-*
closedness (rather than compactness) from each K,: Suppose U is a barrel
neighborhood of 0 in X, and set A = Z N U°. Verify that Z4 is a Banach
space, and use Baire category to (eventually) verify that A = Ky N U° for N
large enough (beyond where Baire produces an interior point; this is where the
“271n “2K, C K,+” plays its role).
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adjoint, 123

Alexander’s lemma, 182
Algebraic Dual, 61

almost weak-* closed, 167
almost weak-* open, 167
Arens topology, 154
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Banach-Steinhaus theorem, 102
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global, 5
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bidual, 130
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biproduct, 128
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bounded for pointwise convergence, 101

box topology, 158

C
Cauchy, 23
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right, 23
chain construction, 82
closed range, 149
cluster point, 4
cofinal, 4
Cohen, 180
compact linear map, 151
complete, 23
sequentially, 23
construction
chain, 82
link, 82
convergence
pointwise, 72
uniform, 175
converges uniformly, 175
convex, 34, 41
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D
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Algebraic, 61
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F Minkowski functional, 55
Fréchet Space, 78 Montel space, 134
Fredholm alternative, 152
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Minkowski, 55 N
fundamental, 171 nearly continuous, 189

nearly open, 110
nearly weakly continuous, 201

G neighborhood base, 5
gauge, 55 net, 2
global base, 5 norm, 55
group normal, 7
topological, 1
0
H original topology, 68
Haar measures, 141
Hahn-Banach theorem, 57 P
Pettis integral, 201
point
I extreme, 137
ideal, 180 internal, 54
prime, 180 pointwise convergence, 72
infrabarreled, 95 polar, 63
internal point, 54 precompact, 108
Isaacs, 180 prime ideal, 180
Ptak, 145
K
Kakutani, 141 Q .
Krein-Milman, 138 quasi-complete, 107
L R
LB-space, 80 reflexive, 131
’ regular, 7
féﬁ;ﬁiﬁhé’oﬂ right Cauchy, 23
link, 81
link construction, 82 S
locally, 6

second dual, 130
seminorm, 55
semireflexive, 131
sequentially complete, 23
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M set

Mackey space, 71 directed, 1

Mackey topology, 70 Space
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map space
compact linear, 151 dual, 61

Milman, 140 Mackey, 71
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Tychonoff product theorem, 182

U
Uniform boundedness theorem, 102
uniform convergence, 175

w

weak integral, 120
weak topology, 68
weakly integrable, 200

213



	Preface
	Contents
	1 Topological Groups
	1.1 Point Set Topology
	1.2 Topological Groups: Neighborhood Bases
	1.3 Set Products
	1.4 Constructions
	1.5 Completeness
	1.6 Completeness and First Countability
	Exercises

	2 Topological Vector Spaces
	2.1 Generalities
	2.2 Special Subsets
	2.3 Convexity
	2.4 Linear Transformations
	Exercises

	3 Locally Convex Spaces
	3.1 Bases
	3.2 Gauges and Seminorms
	3.3 The Hahn–Banach Theorem
	3.4 The Dual
	3.5 Polars
	3.6 Associated Topologies
	3.7 Seminorms and Fréchet Spaces
	3.8 LF-Spaces
	Exercises

	4 The Classics
	4.1 Three Special Properties
	4.2 Uniform Boundedness
	4.3 Completeness
	4.4 The Open Mapping Theorem
	4.5 The Closed Graph Theorem
	Exercises

	5 Dual Spaces
	5.1 Adjoints
	5.2 Subspaces and Quotients
	5.3 The Second Dual
	5.4 Montel Spaces
	5.5 Compact Convex Sets
	5.6 Ptak's Closed Graph Theorem
	5.7 Closed Range Theorems
	Exercises

	6 Duals of Fréchet Spaces
	6.1 Overview Plus
	6.2 Krein–Smulian I
	6.3 Properties of the Dual
	Exercises

	Appendix A Topological Oddities

	Appendix B Closed Graphs in Topological Groups

	Appendix
C The Other Krein–Smulian Theorem
	Appendix
D Further Hints for Selected Exercises
	Bibliography
	Index

